Nothing
#' Estimation of joint latent process models
#'
#' Functions for the estimation of joint latent process models (JLPM).
#' Continuous and ordinal outcomes are handled for the longitudinal part,
#' whereas the survival part considers multiple competing events.
#' The likelihood is computed using Monte-Carlo integration. Estimation is achieved
#' by maximizing the log-likelihood using a robust iterative algorithm.
#'
#' Please report to the JLPM-team any question or suggestion regarding the package
#' via github only (https://github.com/VivianePhilipps/JLPM/issues).
#'
#' @name JLPM-package
#' @docType package
#' @author Cecile Proust-Lima, Viviane Philipps, Tiphaine Saulnier
#'
#' @references
#' Saulnier, Philipps, Meissner, Rascol, Pavy-Le-Traon, Foubert-Samier, Proust-Lima (2022).
#' Joint models for the longitudinal analysis of measurement scales in the presence
#' of informative dropout, Methods 203.
#'
#' Philipps, Hejblum, Prague, Commenges, Proust-Lima (2021).
#' Robust and efficient optimization using a Marquardt-Levenberg algorithm with
#' R package marqLevAlg, The R Journal 13:2.
#'
#' @keywords package
#' @importFrom graphics axis hist lines matlines matplot mtext par plot points segments polygon
#' @importFrom grDevices rainbow rgb col2rgb n2mfrow
#' @importFrom stats as.formula formula get_all_vars integrate median model.frame model.matrix na.fail na.omit na.pass pchisq pnorm qnorm quantile rnorm sd terms residuals vcov fitted coef update
#' @importFrom survival Surv untangle.specials
#' @importFrom randtoolbox sobol
#' @importFrom stringr str_detect
#' @importFrom parallel clusterEvalQ clusterExport clusterSetRNGStream makeCluster parApply stopCluster
#' @importFrom marqLevAlg mla
#' @importFrom lcmm multlcmm Jointlcmm
#' @useDynLib JLPM, .registration=TRUE, .fixes="C_"
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.