Man pages for JointAI
Joint Analysis and Imputation of Incomplete Data

add_linebreaksAdd line breaks to a linear predictor string
add_samplesContinue sampling from an object of class JointAI
all_varsExtract names of variables from several objects
auto_corrAutocorrelation of MCMC samples
bsB-Spline Basis for Polynomial Splines
check_classesCheck classes of all variables used in the model
check_dataRun all data related checks
check_duplicate_groupingsCheck for duplicate grouping levels
check_fixed_randomCheck whether fixed or formula contains a random effects...
check_formula_listEnsure object is a (list of) formula(s)
check_full_blockdiagReplace a full with a block-diagonal variance covariance...
check_groups_vary_within_lvlCheck if a grouping variable varies within another grouping...
check_na_groupingsCheck for missing values in grouping variables
check_rd_vcovCheck / create the random effects variance-covariance matrix...
check_rd_vcov_listFirst validation for rd_vcov
check_redundant_lvlsCheck for unnecessary grouping levels
check_vars_in_dataCheck that all variables in formulas are in the data
choose_default_modelChoose default analysis model based on outcome and data level
clean_namesReplace ":" with "_" in a string
clean_survnameConvert a survival outcome to a model name
combine_formula_listsCombine fixed and random effects formulas
combine_formulasCombine a fixed and random effects formula
compare_data_structureCompare the structure of two data.frames
convert_variablesConvert variables
cross_corrCross-correlation of MCMC samples
default_hyperparsGet the default values for hyper-parameters
densplotPlot the posterior density from object of class JointAI
difftime_dfConverts a 'difftime' object to a 'data.frame'
drop_levelsCheck for empty factor levels
duration_objCreate a duration object
expand_rd_vcov_fullExpand rd_vcov using variable names in case "full" is used
extract_fixef_formulaExtract fixed effects formula from lme4-type formula
extract_groupingExtract grouping variables from a (list of) formula(s)
extract_lhs_stringExtract the left hand side of a formula
extract_lhs_varnamesExtract variable names from the left-hand side of a formula
extract_ranef_formulaExtract random effects formula from lme4-type formula
extract_stateReturn the current state of a 'JointAI' model
factor_to_integerConvert a factor to an integer representation
get_datlvlsDetermine grouping level of data
get_familyIdentify the family from the covariate model type
get_grouping_levelsGet grouping levels
get_groupsGet grouping information
get_listelementGet an element of a list, return a default value if it does...
get_MIdatExtract multiple imputed datasets from an object of class...
get_missinfoObtain a summary of the missing values involved in an object...
get_MlistRe-create the full 'Mlist' from a "JointAI" object
get_modeltypeIdentify the general model type from the covariate model type
get_nranefExtract the number of random effects
get_resp_matIdentify the data matrix containing a given response variable
GR_critGelman-Rubin criterion for convergence
hc_rdslope_infoGet info on main effects in a rd slope structure for a level...
hc_rdslope_interactGet info on the interactions with random slopes for a given...
internal_clean_survnameConvert a survival outcome to a model name
JointAIJointAI: Joint Analysis and Imputation of Incomplete Data
JointAIObjectFitted object of class 'JointAI'
list_modelsList model details
longDFLongitudinal example dataset
MC_errorCalculate and plot the Monte Carlo error
md_patternMissing data pattern
merge_call_argsMerge call arguments with default formals
model_impJoint Analysis and Imputation of incomplete data
NHANESNational Health and Nutrition Examination Survey (NHANES)...
normalize_formula_argsNormalize formula arguments in arglist
nsGenerate a Basis Matrix for Natural Cubic Splines
parametersParameter names of an JointAI object
paste_analysis_typePaste analysis type with family information
paste_coefWrite the coefficient part of a linear predictor
paste_dataWrite the data element of a linear predictor
paste_linpredWrite a linear predictor
paste_scaleCreate the scaling in a data element of a linear predictor
paste_scalingWrap a data element of a linear predictor in scaling syntax
PBCPBC data
plot_allVisualize the distribution of all variables in the dataset
plot_imp_distrPlot the distribution of observed and imputed values
plot.JointAIPlot an object object inheriting from class 'JointAI'
predDFCreate a new data frame for prediction
predict.JointAIPredict values from an object of class JointAI
prep_arglistPrepare list of arguments for model_imp()
rd_terms_by_groupingExtract terms by grouping variables from a formula
rd_vcovExtract the random effects variance covariance matrix
reformat_difftimeSet all elements of a 'difftime' object to the same, largest...
remove_formula_groupingRemove grouping part from (random effects) formula
remove_groupingRemove grouping part from (random effects) formulas
remove_lhsRemove the left hand side of a (list of) formula(s)
replace_nan_with_naReplace NaN values with NA
residuals.JointAIExtract residuals from an object of class JointAI
resolve_family_objResolve family object
set_refcatSpecify reference categories for all categorical covariates...
sharedParamsParameters used by several functions in JointAI
simLongSimulated Longitudinal Data in Long and Wide Format
split_formula_listSplit a list of formulas into fixed and random effects parts.
sum_durationCalculate the sum of the computational duration of a JointAI...
summary.JointAISummarize the results from an object of class JointAI
SurvCreate a Survival Object
traceplotCreate traceplots for a MCMC sample
two_value_to_factorConvert two-value vectors to factors
varname_to_modelframeCreate data.frame from variable term and data
wideDFCross-sectional example dataset
JointAI documentation built on Jan. 30, 2026, 5:07 p.m.