Nothing
Code
bldr_model <- JointFPM(Surv(time = start, time2 = stop, event = event, type = "counting") ~
1, re_model = ~ pyridoxine + thiotepa, ce_model = ~ pyridoxine + thiotepa,
re_indicator = "re", ce_indicator = "ce", df_ce = 3, df_re = 3, cluster = "id",
data = bladder1_stacked)
predict(bldr_model, newdata = data.frame(pyridoxine = 1, thiotepa = 0), t = c(
50), ci_fit = FALSE)
Output
stop fit
1 50 2.430327
Code
bldr_model <- JointFPM(Surv(time = start, time2 = stop, event = event, type = "counting") ~
1, re_model = ~ pyridoxine + thiotepa, ce_model = ~ pyridoxine + thiotepa,
re_indicator = "re", ce_indicator = "ce", df_ce = 3, df_re = 3, cluster = "id",
data = bladder1_stacked)
print(predict(bldr_model, newdata = data.frame(pyridoxine = 1, thiotepa = 0),
t = c(50), ci_fit = TRUE), digits = 4)
Output
stop fit lci uci
1 50 2.43 1.096 3.764
Code
bldr_model <- JointFPM(Surv(time = start, time2 = stop, event = event, type = "counting") ~
1, re_model = ~ pyridoxine + thiotepa, ce_model = ~ pyridoxine + thiotepa,
re_indicator = "re", ce_indicator = "ce", df_ce = 3, df_re = 3, cluster = "id",
data = bladder1_stacked)
print(predict(bldr_model, type = "diff", newdata = data.frame(pyridoxine = 1,
thiotepa = 0), exposed = function(x) transform(x, thiotepa = 1), t = c(50),
ci_fit = TRUE), digits = 4)
Output
stop fit lci uci
1 50 0.878 -0.1133 1.869
Code
bldr_model <- JointFPM(Surv(time = start, time2 = stop, event = event, type = "counting") ~
1, re_model = ~ pyridoxine + thiotepa + size, ce_model = ~ pyridoxine +
thiotepa + size, re_indicator = "re", ce_indicator = "ce", df_ce = 3, df_re = 3,
cluster = "id", data = bladder1_stacked)
print(predict(bldr_model, newdata = data.frame(pyridoxine = 1, thiotepa = 0),
t = c(10), type = "marg_mean_no", ci_fit = TRUE), digits = 4)
Output
stop fit lci uci
1 10 0.6101 0.2782 0.942
Code
bldr_model <- JointFPM(Surv(time = start, time2 = stop, event = event, type = "counting") ~
1, re_model = ~ pyridoxine + thiotepa + size, ce_model = ~ pyridoxine +
thiotepa + size, re_indicator = "re", ce_indicator = "ce", df_ce = 3, df_re = 3,
cluster = "id", data = bladder1_stacked)
print(predict(bldr_model, type = "marg_diff", newdata = data.frame(pyridoxine = 1,
thiotepa = 0), exposed = function(x) transform(x, thiotepa = 1), t = c(50),
ci_fit = TRUE), digits = 4)
Output
stop fit lci uci
1 50 0.8813 -0.1132 1.876
Code
bldr_model <- JointFPM(Surv(time = start, time2 = stop, event = event, type = "counting") ~
1, re_model = ~ pyridoxine + thiotepa, ce_model = ~ pyridoxine + thiotepa,
re_indicator = "re", ce_indicator = "ce", df_ce = 3, df_re = 3, cluster = "id",
data = bladder1_stacked)
predict(bldr_model, newdata = data.frame(pyridoxine = 1, thiotepa = 0), t = c(1,
50, 100), method = "gq", ngq = 30, ci_fit = FALSE)
Output
stop fit
1 1 0.03450826
2 50 2.42961444
3 100 3.95690620
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.