Nothing
#' Estimation of the derivative of the mean number of events
#'
#' This is a helper function for `predict.JointFPM`().
#'
#' @noRd
#'
#' @param obj
#' A `stpm2` object extracted from a `JointFPM` model.
#'
#' @param t
#' A vector of times used for the prediction.
#'
#' @param lambda_dta
#' A `data.frame` used to predict the intensity function for the recurrent
#' event process.
#'
#' @param st_dta
#' A `data.frame` used to predict the survival function for the competing
#' event process.
#'
#' @return
#' A numeric vector of the same length as t including the estimates of the
#' derivative of E[N(t)].
#'
#' @import rstpm2
predict_n <- function(obj,
t,
lambda_dta,
st_dta){
# Extend datasets for predicting different time points
lambda_dta <- cbind(lambda_dta, t)
colnames(lambda_dta)[ncol(lambda_dta)] <- obj@timeVar
st_dta <- cbind(st_dta, t)
colnames(st_dta)[ncol(st_dta)] <- obj@timeVar
# Predict survival function
surv <- rstpm2::predict(obj,
type = "surv",
newdata = st_dta)
# Predict intensity function
lambda <- rstpm2::predict(obj,
type = "hazard",
newdata = lambda_dta)
# Setting lambda to 0 in case of negative prediction for the hazard
lambda <- ifelse(lambda <= 0, 0, lambda)
# Calculate n
n <- surv * lambda
return(n)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.