JointModel: Semiparametric Joint Models for Longitudinal and Counting Processes
Version 1.0

Joint fit of a semiparametric regression model for longitudinal responses and a semiparametric transformation model for time-to-event data.

AuthorSehee Kim <seheek@umich.edu>
Date of publication2016-06-09 05:49:19
MaintainerSehee Kim <seheek@umich.edu>
LicenseGPL-3
Version1.0
Package repositoryView on CRAN
InstallationInstall the latest version of this package by entering the following in R:
install.packages("JointModel")

Popular man pages

dropout: Prostate Cancer Data: Part 2 - a simulated example of study...
pred.jplm.cumhaz: Predict the baseline cumulative hazard function at any given...
pred.jplm.nonlinear: Predict a smoothed nonlinear effect on the longitudinal...
prostate: Prostate Cancer Data: Part 1 - a simulated example of...
jplm: Joint Partially Linear Model for Longitudinal and...
See all...

All man pages Function index File listing

Man pages

dropout: Prostate Cancer Data: Part 2 - a simulated example of study...
jplm: Joint Partially Linear Model for Longitudinal and...
pred.jplm.cumhaz: Predict the baseline cumulative hazard function at any given...
pred.jplm.nonlinear: Predict a smoothed nonlinear effect on the longitudinal...
prostate: Prostate Cancer Data: Part 1 - a simulated example of...

Functions

Files

NAMESPACE
data
data/dropout.rda
data/datalist
data/prostate.rda
R
R/summary.jplm.R
R/pred.jplm.cumhaz.R
R/pred.jplm.nonlinear.R
R/GetLogLik.R
R/jplm.R
R/covest.R
R/em.R
R/basis.R
MD5
DESCRIPTION
man
man/prostate.Rd
man/jplm.Rd
man/pred.jplm.cumhaz.Rd
man/dropout.Rd
man/pred.jplm.nonlinear.Rd
JointModel documentation built on May 20, 2017, 1:40 a.m.

Questions? Problems? Suggestions? Tweet to @rdrrHQ or email at ian@mutexlabs.com.

Please suggest features or report bugs in the GitHub issue tracker.

All documentation is copyright its authors; we didn't write any of that.