| results | R Documentation | 
Returns the results of the classification process.
results(orig.class, predict)| orig.class | Data with the original classes. | 
| predict | Data with classes of results of classifiers. | 
| mse | Mean squared error. | 
| mae | Mean absolute error. | 
| rae | Relative absolute error. | 
| conf.mtx | Confusion matrix. | 
| rate.hits | Hit rate. | 
| rate.error | Error rate. | 
| num.hits | Number of correct instances. | 
| num.error | Number of wrong instances. | 
| kappa | Kappa coefficient. | 
| roc.curve | Data for the ROC curve in classes. | 
| prc.curve | Data for the PRC curve in classes. | 
| res.class | General results of the classes: Sensitivity, Specificity, Precision, TP Rate, FP Rate, NP Rate, F-Score, MCC, ROC Area, PRC Area. | 
Paulo Cesar Ossani
Chicco, D.; Warrens, M. J. and Jurman, G. The matthews correlation coefficient (mcc) is more informative than cohen's kappa and brier score in binary classification assessment. IEEE Access, IEEE, v. 9, p. 78368-78381, 2021.
plot_curve
data(iris) # data set
data  <- iris
names <- colnames(data)
colnames(data) <- c(names[1:4],"class")
#### Start - hold out validation method ####
dat.sample = sample(2, nrow(data), replace = TRUE, prob = c(0.7,0.3))
data.train = data[dat.sample == 1,] # training data set
data.test  = data[dat.sample == 2,] # test data set
class.train = as.factor(data.train$class) # class names of the training data set
class.test  = as.factor(data.test$class)  # class names of the test data set
#### End - hold out validation method ####
dist = "euclidean" 
# dist = "manhattan"
# dist = "minkowski"
# dist = "canberra"
# dist = "maximum"
# dist = "chebyshev"
k = 1
lambda = 5
r <- (ncol(data) - 1)
res <- knn(train = data.train[,1:r], test = data.test[,1:r], class = class.train, 
           k = 1, dist = dist, lambda = lambda)
resp <- results(orig.class = class.test, predict = res$predict)
message("Mean squared error:"); resp$mse
message("Mean absolute error:"); resp$mae
message("Relative absolute error:"); resp$rae
message("Confusion matrix:"); resp$conf.mtx  
message("Hit rate: ", resp$rate.hits)
message("Error rate: ", resp$rate.error)
message("Number of correct instances: ", resp$num.hits)
message("Number of wrong instances: ", resp$num.error)
message("Kappa coefficient: ", resp$kappa)
# message("Data for the ROC curve in classes:"); resp$roc.curve 
# message("Data for the PRC curve in classes:"); resp$prc.curve
message("General results of the classes:"); resp$res.class
dat <- resp$roc.curve; tp = "roc"; ps = 3
# dat <- resp$prc.curve; tp = "prc"; ps = 4
plot_curve(data = dat, type = tp, title = NA, xlabel = NA, ylabel = NA,  
           posleg = ps, boxleg = FALSE, axis = TRUE, size = 1.1, grid = TRUE, 
           color = TRUE, classcolor = NA, savptc = FALSE, width = 3236, 
           height = 2000, res = 300, casc = FALSE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.