View source: R/cutoff.bootstrap.R
| cutoff.bootstrap | R Documentation | 
Implements a bootstrap critical value for testing the goodness-of-fit of a parametrically estimated density with the test statistic S.n.
cutoff.bootstrap(xin, M, sim, dist, h.use, kfun, p1, p2, sig.lev)
| xin | A vector of data points - the available sample. | 
| M | Number of bootstrap replications. | 
| sim | A character string indicating the type of simulation required: "ordinary" (the default), "parametric", "balanced", "permutation", or "antithetic". | 
| dist | The null distribution. | 
| h.use | The test statistic bandwidth, best implemented with  | 
| kfun | The kernel to use in the density estimates used in the bandwidth expression. | 
| p1 | Parameter 1 (vector or object) for the null distribution. | 
| p2 | Parameter 2 (vector or object) for the null distribution. | 
| sig.lev | Significance level of the hypothesis test. | 
Implements the bootstrap based finite sample critical value defined in Section 2.6, Bagkavos, Patil and Wood (2021), and calculated as follows:
1. Resample the observations \mathcal{X}=\{X_1, …, X_n\} to obtain M bootstrap samples, denoted by \mathcal{X}_m^\ast=\{ X_{1m}^\ast, …, X_{nm}^\ast\}, where for each m=1,… , M, \mathcal{X}_m^\ast is sampled randomly, with replacement, from \mathcal{X}. Write \hat{θ}=θ(\mathcal{X}) for the estimator of θ based on the original sample \mathcal{X} and, for each m, define the bootstrap estimator of θ by \hat{θ}_m^\ast = θ(\mathcal{X}_m^\ast), where θ(\cdot) is the relevant functional for the parameter θ.
2. For m=1, … , M, use \mathcal{X}_m^\ast =\{X_{1m}^\ast, …, X_{nm}^\ast\} and \hat θ_m^\ast from the previous step to calculate n Δ^{2d} h^{-d/2} \hat S_{n,m}^\ast(hρ),m=1, …, M.
3. Calculate \ell_α^\ast as the 1-α empirical quantile of the values n Δ^{2d} h^{-d/2} \hat S_{n,m}^\ast(hρ), m=1, …, M. Then \ell_α^\ast approximately satisfies P^\ast [ n Δ^{2d} h^{-d/2}\hat S_{n,m}^\ast(hρ)> \ell_α^\ast ]=1-α, where P^\ast indicates the bootstrap probability measure conditional on \mathcal{X}.
A scalar, the estimate of the bootstrap critical value at the given significance level.
Dimitrios Bagkavos
R implementation and documentation: Dimitrios Bagkavos <dimitrios.bagkavos@gmail.com>
Bagkavos, Patil and Wood: Nonparametric goodness-of-fit testing for a continuous multivariate parametric model, (2021), under review.
Gao and Gijbels, Bandwidth selection in nonparametric kernel testing, pp. 1584-1594, JASA (2008)
cutoff.asymptotic, cutoff.edgeworth 
library(nor1mix)
library(boot)
SampleSize<-80
M<-1000
dist<- "normixt"
kfun<- Epanechnikov
p1 <-MW.nm2
p2 <-1
sig.lev <- 0.05
sim<-"ordinary"
## Not run: 
#Run the following to compare the asymptotic and bootstrap cut-off points on 4 occasions:
for(i in 15:18)
  {
    set.seed(i)
    xin<-rnorMix(SampleSize, p1)
    h.use <- hopt.be(xin)
    l.a.a<-cutoff.asymptotic( dist,   p1, p2, sig.lev )
    l.a.b<- cutoff.bootstrap(xin,  M,  sim, dist, h.use,  kfun, p1, p2, sig.lev)
    #print the result of each iteration:
    cat("Asympt. cut.off= ", l.a.a, "Boot. cut.off= ", l.a.b,  "\n")
   }
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.