| llm_config | R Documentation |
llm_config() builds a provider-agnostic configuration object that
call_llm() (and friends) understand. You can pass provider-specific
parameters via ...; LLMR forwards them as-is, with a few safe conveniences.
llm_config(
provider,
model,
api_key = NULL,
troubleshooting = FALSE,
base_url = NULL,
embedding = NULL,
no_change = FALSE,
...
)
provider |
Character scalar. One of:
|
model |
Character scalar. Model name understood by the chosen provider.
(e.g., |
api_key |
Character scalar. Provider API key. |
troubleshooting |
Logical. If |
base_url |
Optional character. Back-compat alias; if supplied it is
stored as |
embedding |
|
no_change |
Logical. If |
... |
Additional provider-specific parameters (e.g., |
An object of class c("llm_config", provider). Fields:
provider, model, api_key, troubleshooting, embedding,
no_change, and model_params (a named list of extras).
Anthropic temperatures must be in [0, 1]; others in [0, 2]. Out-of-range
values are clamped with a warning.
You can pass api_url (or base_url= alias) in ... to point to gateways
or compatible proxies.
call_llm,
call_llm_robust,
llm_chat_session,
call_llm_par,
get_batched_embeddings
## Not run:
# Basic OpenAI config
cfg <- llm_config("openai", "gpt-4o-mini",
temperature = 0.7, max_tokens = 300)
# Generative call returns an llmr_response object
r <- call_llm(cfg, "Say hello in Greek.")
print(r)
as.character(r)
# Embeddings (inferred from the model name)
e_cfg <- llm_config("gemini", "text-embedding-004")
# Force embeddings even if model name does not contain "embedding"
e_cfg2 <- llm_config("voyage", "voyage-large-2", embedding = TRUE)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.