ParallelTest | R Documentation |
This function computes the bootstrap test for the null hypothesis of a pure lognormal distribution versus the alternative of a lognormal-Pareto mixture, where the parameters of the latter are estimated via maximum profile likelihood. Implemented via parallel computing.
ParallelTest(nboot, y, obsTest, minRank)
nboot |
number of bootstrap replications. |
y |
observed data. |
obsTest |
value of the test statistics computed with the data under analysis. |
minRank |
minimum possible rank of the threshold. |
A list with the following elements:
LR: nboot simulated values of the llr test under the null hypothesis.
pval: p-value of the test.
minRank = 90
mixFit <- LPfitProf(TN2016,minRank,0)
ell1 <- mixFit$loglik
estNull <- c(mean(log(TN2016)),sd(log(TN2016)))
ellNull <- sum(log(dlnorm(TN2016,estNull[1],estNull[2])))
obsTest <- 2*(ell1-ellNull)
nboot = 2
TestRes = ParallelTest(nboot,TN2016,obsTest,minRank)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.