sobol.decomposition.lsd | R Documentation |
This function performs the global sensitivity analysis of a previously fitted meta-model using the Sobol variance decomposition method (Saltelli et al., 2008). If no model is supplied, uses a B-spline smoothing interpolation model.
sobol.decomposition.lsd( data, model = NULL, krig.sa = FALSE, sa.samp = 1000 )
data |
an object created by a previous call to |
model |
an object created by a previous call to |
krig.sa |
logical: use alternative Kriging-specific algorithm if TRUE (see |
sa.samp |
integer: number of samples to use in sensitivity analysis. The default is 1000. |
This function performs the global sensitivity analysis on a meta-model, previously estimated with kriging.model.lsd
or polynomial.model.lsd
, using the Sobol variance decomposition method (Saltelli et al., 2008).
This function is a wrapper to the functions fast99
and sobolGP
in sensitivity-package
.
The function returns an object/list of class kriging-sa
or polynomial-sa
, according to the input meta-model, containing several items:
metamodel |
an object/list of class |
sa |
a print-ready data frame with the Sobol indexes for each factor. |
topEffect |
a vector containing the indexes to the three most influential factors, automatically calculated (if |
If no model is supplied and a B-spline smoothing interpolation model cannot be fitted, returns NULL
.
See the note in LSDsensitivity-package for step-by-step instructions on how to perform the complete sensitivity analysis process using LSD and R.
Marcelo C. Pereira [aut, cre] (<https://orcid.org/0000-0002-8069-2734>)
Saltelli A, Ratto M, Andres T, Campolongo F, Cariboni J, Gatelli D, Saisana M, Tarantola S (2008) Global sensitivity analysis: the primer. Wiley, New York
read.doe.lsd()
,
kriging.model.lsd()
,
polynomial.model.lsd()
fast99()
,
sobolGP()
in sensitivity-package
# get the example directory name
path <- system.file( "extdata/sobol", package = "LSDsensitivity" )
# Steps to use this function:
# 1. define the variables you want to use in the analysis
# 2. load data from a LSD simulation saved results using read.doe.lsd
# 3. fit a Kriging (or polynomial) meta-model using kriging.model.lsd
# 4. perform the sensitivity analysis applying sobol.decomposition.lsd
lsdVars <- c( "var1", "var2", "var3" ) # the definition of existing variables
dataSet <- read.doe.lsd( path, # data files folder
"Sim3", # data files base name (same as .lsd file)
"var3", # variable name to perform the sensitivity analysis
does = 2, # number of experiments (data + external validation)
saveVars = lsdVars ) # LSD variables to keep in dataset
model <- kriging.model.lsd( dataSet ) # estimate best Kriging meta-model
SA <- sobol.decomposition.lsd( dataSet, # LSD experimental data set
model ) # estimated meta-model
print( SA$topEffect ) # indexes to the top 3 factors
print( SA$sa ) # Sobol indexes table
barplot( t( SA$sa ) ) # plot Sobol indexes chart
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.