step3_1t | R Documentation |
Result function for latent regression.Details can be found in Iaconangelo (2017).
step3_1t(eap, cep, covar, K, method)
eap |
expected a posteriori. |
cep |
classification error probabilities. |
covar |
covariances. |
K |
number of attributes. |
method |
the sample-level |
A data.frame containing the following columns:
The attribute.
Estimated regression coefficient.
Odds ratio.
Effect size.
Standard error.
95% confidence interval.
Wald test z-statistics.
Two-tailed p-value.
One-tailed p-value.
Iaconangelo, C. (2017). Uses of classification error probabilities in the three-step approach to estimating cognitive diagnosis models (Doctoral dissertation). https://rucore.libraries.rutgers.edu/rutgers-lib/55495/PDF/1/play/
# ---- Runable example (using simulated CEP) ----
if (requireNamespace("GDINA", quietly = TRUE)) {
library(GDINA)
dat <- sim10GDINA$simdat
Q <- matrix(c(1,0,0,
0,1,0,
0,0,1,
1,0,1,
0,1,1,
1,1,0,
0,0,1,
1,0,0,
1,1,1,
1,0,1), byrow = TRUE, ncol = 3)
fit.object <- GDINA(dat, Q = Q, model = "GDINA", att.dist = "independent", verbose = FALSE)
cep_test <- list(SL.k = list(), PDL.k = list())
for (i in 1:3) {
cep_test$SL.k[[i]] <- matrix(runif(4, min = 0, max = 1), nrow = 2)
cep_test$PDL.k[[i]] <- lapply(1:1000, function(j) matrix(runif(4, min = 0, max = 1), nrow = 2))
}
eap <- personparm(fit.object, what = "EAP")
covar_test <- matrix(runif(3000, min = -2, max = 2), nrow = 1000)
K <- 3
result_SL <- step3_1t(eap = eap, cep = cep_test, covar = covar_test, K = K, method = "SL")
result_PDL <- step3_1t(eap = eap, cep = cep_test, covar = covar_test, K = K, method = "PDL")
}
# ---- Not recommended to run (depends on CEP() output) ----
## Not run:
fit.object <- GDINA(dat = dat, Q = Q, model = "GDINA", att.dist = "independent", verbose = FALSE)
cep <- CEP_1t(fit.object)
eap <- personparm(fit.object, what = "EAP")
out_PDL <- step3_1t(eap, Q, cep, covar, K, "PDL")
out_SL <- step3_1t(eap, Q, cep, covar, K, "SL")
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.