| gap_table | R Documentation | 
gap_table() creates a gt::gt() with one row per group, summarizing key
gap and gap-related information about the dataset. These include the
available data, total duration, number of gaps, missing implicit and explicit
data, and, optionally, irregular data.
gap_table(
  dataset,
  Variable.colname = MEDI,
  Variable.label = "melanopic EDI",
  title = "Summary of available and missing data",
  Datetime.colname = Datetime,
  epoch = "dominant.epoch",
  full.days = TRUE,
  include.implicit.gaps = TRUE,
  check.irregular = TRUE,
  get.df = FALSE
)
| dataset | A light logger dataset. Needs to be a dataframe. | 
| Variable.colname | Column name of the variable to check for NA values. Expects a symbol. | 
| Variable.label | Clear name of the variable. Expects a string | 
| title | Title string for the table | 
| Datetime.colname | The column that contains the datetime. Needs to be a
 | 
| epoch | The epoch to use for the gapless sequence. Can be either a
 | 
| full.days | If  | 
| include.implicit.gaps | Logical. Whether to expand the datetime sequence
and search for implicit gaps, or not. Default is  | 
| check.irregular | Logical on whether to include irregular data in the summary, i.e. data points that do not fall on the regular sequence. | 
| get.df | Logical whether the dataframe should be returned instead of a
 | 
A gt table about data and gaps in the dataset
sample.data.environment |> dplyr::filter(MEDI <= 50000) |> gap_table()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.