ggm.first.step.blocks: Threshold block fused lasso step for gaussian graphical...

Description Usage Arguments Value

View source: R/LinearDetect-package.R

Description

Perform the block fused lasso with thresholding to detect candidate break points.

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
ggm.first.step.blocks(
  data_y,
  data_x,
  lambda1,
  lambda2,
  max.iteration = max.iteration,
  tol = tol,
  blocks,
  cv.index,
  HBIC = FALSE,
  gamma.val = NULL
)

Arguments

data_y

input data matrix Y

data_x

input data matrix X

lambda1

tuning parmaeter lambda_1 for fused lasso

lambda2

tuning parmaeter lambda_2 for fused lasso

max.iteration

max number of iteration for the fused lasso

tol

tolerance for the fused lasso

blocks

the blocks

cv.index

the index of time points for cross-validation

HBIC

logical; if TRUE, use high-dimensional BIC, if FALSE, use orginal BIC. Default is FALSE.

gamma.val

hyperparameter for HBIC, if HBIC == TRUE.

Value

A list object, which contains the followings

jump.l2

estimated jump size in L2 norm

jump.l1

estimated jump size in L1 norm

pts.list

estimated change points in the first step

beta.full

estimated parameters in the first step


LinearDetect documentation built on March 22, 2021, 9:06 a.m.