cumhaz: Cumulative hazard transformation

Description Usage Arguments Value Note Author(s) References See Also Examples

View source: R/LogicReg.R

Description

Transforms survival times using the cumulative hazard function.

Usage

1
cumhaz(y, d)

Arguments

y

vector of nonnegative survival times

d

vector of censoring indicators, should be the same length as y. If d is missing the data is assumed to be uncensored.

Value

A vector of transformed survival times.

Note

The primary use of doing a cumulative hazard transformation is that after such a transformation, exponential survival models yield results that are often very much comparable to proportional hazards models. In our implementation of Logic Regression, however, exponential survival models run much faster than proportional hazards models when there are no continuous separate covariates.

Author(s)

Ingo Ruczinski [email protected] and Charles Kooperberg [email protected].

References

Ruczinski I, Kooperberg C, LeBlanc ML (2003). Logic Regression, Journal of Computational and Graphical Statistics, 12, 475-511.

See Also

logreg

Examples

1
2
3
4
5
6
7
8
data(logreg.testdat)
#
# this is not survival data, but it shows the functionality
yy <- cumhaz(exp(logreg.testdat[,1]), logreg.testdat[, 2])
# then we would use
# logreg(resp=yy, cens=logreg.testdat[,2], type=5, ...
# insted of
# logreg(resp=logreg.testdat[,1], cens=logreg.testdat[,2], type=4, ...

LogicReg documentation built on June 15, 2018, 1:04 a.m.

Related to cumhaz in LogicReg...