Nothing
test_private_data <- function() {
#devtools::load_all()
library(magrittr)
library(MAP)
dirpath = system.file('data', package = 'MAP')
df_test = get(load(file.path(dirpath, 'data_to_Thomas.Rdata')))
df_test$RA_GoldStandard %<>% { ifelse(. == 'Y', 1, 0) }
m_data = Matrix(data = cbind(ICD = df_test$`PheCode:714.1`, NLP = 1),
sparse = TRUE)
m_note = Matrix(df_test$utl, ncol = 1, sparse = TRUE)
set.seed(1)
res_full = MAP(m_data, m_note)
# users can either use cut.MAP to binarize or determine a threshold
# themselves with AUC
df_perf_full = df_test %$% cbind.data.frame(scores = res_full$scores[, 1],
RA_GoldStandard) %>% na.omit
roc_obj = df_perf_full %$% pROC::roc(RA_GoldStandard, scores)
expect_equal(round(roc_obj$auc, 3), 0.93)
n_half = nrow(m_data) %/% 2
set.seed(1)
res_half = MAP(m_data, m_note, subset_sample = TRUE,
subset_sample_size = n_half)
df_perf = df_test %$% cbind.data.frame(scores = res_half$scores[, 1],
RA_GoldStandard) %>% na.omit
roc_obj = df_perf %$% pROC::roc(RA_GoldStandard, scores)
expect_equal(round(roc_obj$auc, 3), 0.929)
roc_obj = pROC::roc(res_full$scores[, 1] < res_full$cut.MAP,
as.numeric(res_half$scores[, 1] < res_half$cut.MAP))
expect_equal(round(roc_obj$auc, 3), 0.993)
n_fifth = nrow(m_data) %/% 5
set.seed(1)
res_fifth = MAP(m_data, m_note, subset_sample = TRUE, subset_sample_size = n_fifth)
df_perf = df_test %$% cbind.data.frame(scores = res_fifth$scores[, 1],
RA_GoldStandard) %>% na.omit
roc_obj = df_perf %$% pROC::roc(RA_GoldStandard, scores)
expect_equal(round(roc_obj$auc, 3), 0.93)
roc_obj = pROC::roc(res_full$scores[, 1] < res_full$cut.MAP,
as.numeric(res_fifth$scores[, 1] < res_fifth$cut.MAP))
expect_equal(round(roc_obj$auc, 3), 0.993)
set.seed(1)
auc = 0
for (i in 1:5) {
res_half = MAP(m_data, m_note, subset_sample = TRUE,
subset_sample_size = n_half)
df_perf = df_test %$% cbind.data.frame(scores = res_half$scores[, 1],
RA_GoldStandard) %>% na.omit
roc_obj = df_perf %$% pROC::roc(RA_GoldStandard, scores)
auc = auc + roc_obj$auc
}
expect_equal(round(auc / 5, 3), 0.929)
set.seed(1)
auc = 0
for (i in 1:5) {
res_fifth = MAP(m_data, m_note, subset_sample = TRUE,
subset_sample_size = n_fifth)
df_perf = df_test %$% cbind.data.frame(scores = res_fifth$scores[, 1],
RA_GoldStandard) %>% na.omit
roc_obj = df_perf %$% pROC::roc(RA_GoldStandard, scores)
auc = auc + roc_obj$auc
}
expect_equal(round(auc / 5, 3), 0.929)
set.seed(1)
auc = 0
for (i in 1:5) {
res_tenth = MAP(m_data, m_note, subset_sample = TRUE,
subset_sample_size = n_fifth %/% 2)
df_perf = df_test %$% cbind.data.frame(scores = res_tenth$scores[, 1],
RA_GoldStandard) %>% na.omit
roc_obj = df_perf %$% pROC::roc(RA_GoldStandard, scores)
auc = auc + roc_obj$auc
}
expect_equal(round(auc / 5, 3), 0.928)
set.seed(1)
auc = 0
for (i in 1:5) {
res_tenth = MAP(m_data, m_note, subset_sample = TRUE,
subset_sample_size = 16)
df_perf = df_test %$% cbind.data.frame(scores = res_tenth$scores[, 1],
RA_GoldStandard) %>% na.omit
roc_obj = df_perf %$% pROC::roc(RA_GoldStandard, scores)
auc = auc + roc_obj$auc
}
expect_equal(round(auc / 5, 3), 0.914)
}
#test_that('private_data', test_private_data())
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.