Nothing
## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
fig.width = 7,
fig.height = 4,
fig.align = "center"
)
## ----setup--------------------------------------------------------------------
library(MAPCtools)
data("toy_data")
## ----plot-missing-data--------------------------------------------------------
plot_missing_data(toy_data, x = period, y = age)
## ----plot-missing-data-stratify-----------------------------------------------
plot_missing_data(
data = toy_data,
x = period,
y = age,
stratify_by = education
)
## ----plot-missing-data-for-each-----------------------------------------------
plot_missing_data(
data = toy_data,
x = period,
y = age,
stratify_by = education,
for_each = sex
)
## ----plot-coints-1d-----------------------------------------------------------
plot_counts_1D(
toy_data,
x = age,
stratify_by = education,
for_each = sex
)
## ----plot-counts-2d-----------------------------------------------------------
plot_counts_2D(
toy_data,
x = age,
y = period,
stratify_by = education,
for_each = sex
)
## ----plot-binnd-counts--------------------------------------------------------
plot_binned_counts(
toy_data,
x = period,
bin_by = age,
n_bins = 4,
stratify_by = education,
for_each = sex
)
## ----plot-mean-1d-------------------------------------------------------------
plot_mean_response_1D(
toy_data,
response = count,
x = age,
stratify_by = education,
for_each = sex
)
## ----plot-mean-2d-------------------------------------------------------------
plot_mean_response_2D(
toy_data,
response = count,
x = period,
y = age,
stratify_by = education
)
## ----plot-known-rate----------------------------------------------------------
require(ggplot2)
# Over age
ggplot(toy_data, aes(x = age, y = known_rate, color = education)) +
stat_summary(fun=mean, geom="line") +
facet_wrap(~ sex, ncol = 2) +
labs(
title = "Poisson rates by age and education level",
x = "Age",
y = "Rate",
color = "Education"
) +
scale_color_viridis_d() +
theme_minimal() +
theme(plot.title = element_text(hjust=0.5),
legend.position = "bottom")
# Over period
ggplot(toy_data, aes(x = period, y = known_rate, color = education)) +
stat_summary(fun=mean, geom="line") +
facet_wrap(~ sex, ncol = 2) +
labs(
title = "Poisson rates by period and education level",
x = "Period",
y = "Rate",
color = "Education"
) +
scale_color_viridis_d() +
theme_minimal() +
theme(plot.title = element_text(hjust=0.5),
legend.position = "bottom")
# Over cohort
ggplot(toy_data, aes(x = cohort, y = known_rate, color = education)) +
stat_summary(fun=mean, geom="line") +
facet_wrap(~ sex, ncol = 2) +
labs(
title = "Poisson rates by cohort and education level",
x = "Cohort",
y = "Rate",
color = "Education"
) +
scale_color_viridis_d() +
theme_minimal() +
theme(plot.title = element_text(hjust=0.5),
legend.position = "bottom")
## ----filter-sex---------------------------------------------------------------
require(dplyr)
toy_data.f <- toy_data %>% filter(sex == "female") %>% subset(cohort > 1931)
toy_data.m <- toy_data %>% filter(sex == "male") %>% subset(cohort > 1931 & cohort < 1999)
## ----fit-apC, eval=FALSE, echo=TRUE-------------------------------------------
# apC_fit.f <- fit_MAPC(
# data = toy_data.f,
# response = count,
# family = "poisson",
# apc_format = "apC",
# stratify_by = education,
# reference_strata = 1,
# age = age,
# period = period
# )
#
# apC_fit.m <- fit_MAPC(
# data = toy_data.m,
# response = count,
# family = "poisson",
# apc_format = "apC",
# stratify_by = education,
# reference_strata = 1,
# age = age,
# period = period
# )
## ----load-apC-fit, results = 'hide'-------------------------------------------
apC_fit.f <- readRDS(system.file("extdata", "quickstart-apC_fit_f.rds", package = "MAPCtools"))
apC_fit.m <- readRDS(system.file("extdata", "quickstart-apC_fit_m.rds", package = "MAPCtools"))
## ----print-apC-fit------------------------------------------------------------
print(apC_fit.f) # Concise summary the model that was fit
# print(apC_fit.f)
## ----plot-apC-fit-f-----------------------------------------------------------
plot(apC_fit.f) # Plots estimated cross-strata contrast trends
## ----plot-apC-fit-m-----------------------------------------------------------
plot(apC_fit.m) # Plots estimated cross-strata contrast trends
## ----summary-apC-fit----------------------------------------------------------
# This doesn't print nice in a rmd/qmd file
# summary(apC_fit) # Detailed posterior summaries
## ----fit-all-mapc, eval=FALSE, echo=TRUE--------------------------------------
# all_fits.f <- fit_all_MAPC(
# data = toy_data.f,
# response = count,
# family = "poisson",
# stratify_by = education,
# reference_strata = 1,
# age = age,
# period = period,
# include.random = TRUE
# )
#
# all_fits.m <- fit_all_MAPC(
# data = toy_data.m,
# response = count,
# family = "poisson",
# stratify_by = education,
# reference_strata = 1,
# age = age,
# period = period,
# include.random = TRUE
# )
## ----load-all-fits, results = 'hide'------------------------------------------
all_fits.f <- readRDS(system.file("extdata", "quickstart-all_fits_f.rds", package = "MAPCtools"))
all_fits.m <- readRDS(system.file("extdata", "quickstart-all_fits_m.rds", package = "MAPCtools"))
## ----print-all_fits-----------------------------------------------------------
print(all_fits.f) # concise summary of each model
# print(all_fits.m)
## ----plot-all-fits-f----------------------------------------------------------
plot(all_fits.f) # model comparison plots (DIC/WAIC/log-score)
## ----plot-all-fits-m----------------------------------------------------------
plot(all_fits.m) # model comparison plots (DIC/WAIC/log-score)
## ----summary-all-fits---------------------------------------------------------
# summary(all_fits.f) # detailed posterior summaries for each fit
# summary(all_fits.m)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.