MBCn | R Documentation |
Multivariate bias correction that matches the multivariate
distribution using QDM
and the N-dimensional
probability density function transform (N-pdft) following
Cannon (2018).
MBCn(o.c, m.c, m.p, iter=30, ratio.seq=rep(FALSE, ncol(o.c)),
trace=0.05, trace.calc=0.5*trace, jitter.factor=0,
n.tau=NULL, ratio.max=2, ratio.max.trace=10*trace,
ties='first', qmap.precalc=FALSE, rot.seq=NULL,
silent=FALSE, n.escore=0, return.all=FALSE, subsample=NULL,
pp.type=7)
o.c |
matrix of observed samples during the calibration period. |
m.c |
matrix of model outputs during the calibration period. |
m.p |
matrix of model outputs during the projected period. |
iter |
maximum number of algorithm iterations. |
ratio.seq |
vector of logical values indicating if samples are of a ratio quantity (e.g., precipitation). |
trace |
numeric values indicating thresholds below which values of a ratio quantity (e.g., |
trace.calc |
numeric values of thresholds used internally when handling of exact zeros; defaults to one half of |
jitter.factor |
optional strength of jittering to be applied when quantities are quantized. |
n.tau |
number of quantiles used in the quantile mapping; |
ratio.max |
numeric values indicating the maximum proportional changes allowed for ratio quantities below the |
ratio.max.trace |
numeric values of trace thresholds used to constrain the proportional change in ratio quantities to |
ties |
method used to handle ties when calculating ordinal ranks. |
qmap.precalc |
logical value indicating if |
rot.seq |
use a supplied list of random rotation matrices. |
silent |
logical value indicating if algorithm progress should be reported. |
n.escore |
number of cases used to calculate the energy distance when monitoring convergence. |
return.all |
logical value indicating whether results from all iterations are returned. |
subsample |
use |
pp.type |
type of plotting position used in |
a list of with elements consisting of:
mhat.c |
matrix of bias corrected |
mhat.p |
matrix of bias corrected |
Cannon, A.J., 2018. Multivariate quantile mapping bias correction: An N-dimensional probability density function transform for climate model simulations of multiple variables. Climate Dynamics, 50(1-2):31-49. doi:10.1007/s00382-017-3580-6
Cannon, A.J., S.R. Sobie, and T.Q. Murdock, 2015. Bias correction of simulated precipitation by quantile mapping: How well do methods preserve relative changes in quantiles and extremes? Journal of Climate, 28:6938-6959. doi:10.1175/JCLI-D-14-00754.1
PitiƩ, F., A.C. Kokaram, and R. Dahyot, 2005. N-dimensional probability density function transfer and its application to color transfer. In Tenth IEEE International Conference on Computer Vision, 2005. ICCV 2005. (Vol. 2, pp. 1434-1439). IEEE.
PitiƩ, F., A.C. Kokaram, and R. Dahyot, 2007. Automated colour grading using colour distribution transfer. Computer Vision and Image Understanding, 107(1):123-137.
QDM, MBCp, MBCr, MRS, escore, rot.random
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.