Description Usage Arguments Author(s) References See Also Examples
Run a gibbs sampler for a Multivariate Bayesian sparse group selection model with spike and slab prior. This function is designed for a regression model with multivariate response, where the design matrix has a group structure.
1 2 3 4 |
Y |
A numerical vector representing the univariate response variable. |
X |
A matrix respresenting the design matrix of the linear regression model. |
group_size |
Integer vector representing the size of the groups of the design matrix |
pi0 |
Initial value for pi0 which will be updated if |
pi1 |
Initial value for pi1 which will be updated if |
a1 |
First shape parameter of the conjugate beta hyper-prior for |
a2 |
Second shape parameter of the conjugate beta prior for |
c1 |
First shape parameter of the conjugate beta hyper-prior for |
c2 |
Second shape parameter of the conjugate beta prior for |
pi_prior |
Logical. If "TRUE" beta priors are used for pi0 and pi1 |
niter |
Number of iteration for the Gibbs sampler. |
burnin |
Number of burnin iteration |
d |
Degree of freedom of the inverse Wishart prior of the covariance matrix of the response variable. By default |
num_update |
Number of update regarding the scaling of the shrinkage parameter lambda which is calibrated by a Monte Carlo EM algorithm |
niter.update |
Number of itertion regarding the scaling of the shrinkage parameter lambda which is calibrated by a Monte Carlo EM algorithm |
Benoit Liquet and Matthew Sutton.
B. Liquet, K. Mengersen, A. Pettitt and M. Sutton. (2016). Bayesian Variable Selection Regression Of Multivariate Responses For Group Data. Submitted in Bayesian Analysis.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | ## Not run:
## Simulation of datasets X and Y with group variables
data1 = gen_data_Multi(nsample = 120, ntrain = 80)
data1 = Mnormalize(data1)
true_model <- data1$true_model
X <- data1$X
Y<- data1$Y
train_idx <- data1$train_idx
gsize <- data1$gsize
niter <- 2000
burnin <- 1000
model <- MBSGSSS(Y,X,niter=niter,burnin=burnin,group_size=gsize,
num_update = 50,niter.update = 50)
model$pos_median[,1]!=0
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.