View source: R/model_response.R
model_response | R Documentation |
It calculates the model response and parameters of interest for a given distribution.
model_response(doses, distr, model.true, models.candidate)
doses |
a numeric vector indicating the doses that will be considered in the clinical trial. |
distr |
a character value indicating the distribution of the response variable. Currently, the only option available is 'weibull'. |
model.true |
a character value indicating the functional form of the true dose-response curve. Options are "constant", "linear", "linlog", "quadratic", "exponential", "emax", "sigmaEmax", "betaMod", "logistic", "linInt". |
models.candidate |
an object of class Mods. See more details in |
a data frame with dimension length(doses) \times
3 with the following columns: (1) model response (2) model parameter and (3) doses
Diniz, M.A., Gallardo D.I., Magalhaes, T.M.
Diniz, Márcio A. and Gallardo, Diego I. and Magalhães, Tiago M. (2023). Improved inference for MCP-Mod approach for time-to-event endpoints with small sample sizes. arXiv <doi.org/10.48550/arXiv.2301.00325>
library(DoseFinding)
library(MCPModBC)
## doses scenarios
doses <- c(0, 5, 25, 50, 100)
nd <- length(doses)
# median survival time for placebo dose
mst.control <- 4
# shape parameter
sigma.true <- 0.5
# maximum hazard ratio between active dose and placebo dose
hr.ratio <- 4
# minimum hazard ratio between active dose and placebo dose
hr.Delta <- 2
# hazard rate for placebo dose
placEff <- log(mst.control/(log(2)^sigma.true))
# maximum hazard rate for active dose
maxEff <- log((mst.control*(hr.ratio^sigma.true))/(log(2)^sigma.true))
# minimum hazard rate for active dose
minEff.Delta <- log((mst.control*(hr.Delta^sigma.true))/(log(2)^sigma.true))
Delta <- (minEff.Delta - placEff)
## MCP Parameters
emax <- guesst(d = doses[4], p = 0.5, model="emax")
exp <- guesst(d = doses[4], p = 0.1, model="exponential", Maxd = doses[nd])
logit <- guesst(d = c(doses[3], doses[4]), p = c(0.1,0.8), "logistic", Maxd= doses[nd])
betam <- guesst(d = doses[2], p = 0.3, "betaMod", scal=120, dMax=50, Maxd= doses[nd])
models.candidate <- Mods(emax = emax, linear = NULL,
exponential = exp, logistic = logit,
betaMod = betam, doses = doses,
placEff = placEff, maxEff = (maxEff- placEff))
plot(models.candidate)
## True Model
model.true <- "emax"
response <- model_response(doses = doses,
distr = "weibull",
model.true = model.true,
models.candidate = models.candidate)
response
lambda.true <- response$lambda
parm <- list(lambda = lambda.true, sigma = sigma.true)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.