Description Details Author(s) References Examples

Analyzes non-normal data via the Multiple Comparison Procedures and Modeling approach ('MCP-Mod'). Many functions rely on the 'DoseFinding' package. This package makes it so the user does not need to prespecify or calculate the *μ* vector and *S* matrix. Instead, the user typically supplies the data in its raw form, and this package will calculate the needed objects and pass them into the ‘DoseFinding' functions. If the user wishes to primarily use the functions provided in the 'DoseFinding' package, a singular function ('prepareGen') will provide mu and S. The package currently handles power analysis and the ’MCP-Mod' procedure for negative binomial, Poisson, and binomial data. The 'MCP-Mod' procedure can also be applied to survival data, but power analysis is not available.

Package: | MCPModGeneral |

Type: | Package |

Version: | 0.1-1 |

Date: | 2020-2-9 |

License: | GPL-3 |

The main functions are:

** prepareGen**: Calculates the

`MCPMod`

functions (e.g. `MCPMod`

, `MCTtest`

, `planMod`

)`MCPModGen`

`MCPMod`

procedure for raw negative binomial and binary data.`planModPrepare`

`powMCTGen`

`sampSizeMCTGen`

The secondary functions are:

** MCPModSurv**: Implements the full

`MCPMod`

procedure for basic survival data. This includes a Cox-PH model and parametric survival regression models. Power analysis is not available for the survival data.`simS`

Ian Laga

Maintainer: Ian Laga <ilaga25@gmail.com>

Pinheiro, J. C., Bornkamp, B., Glimm, E. and Bretz, F. (2014)
Model-based dose finding under model uncertainty using general
parametric models, *Statistics in Medicine*, **33**,
1646–1661

Buckland, S. T., Burnham, K. P. and Augustin, N. H. (1997). Model selection an integral part
of inference, *Biometrics*, **53**, 603–618

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | ```
# Analyze the binary migraine data from the DoseFinding package.
data(migraine)
models = Mods(linear = NULL, emax = 1, quadratic = c(-0.004),
doses = migraine$dose)
powMCTGen(migraine$ntrt, "binomial", "logit",
Ntype = "actual", altModels = models)
sampSizeMCTGen("binomial", "logit", altModels = models, power = 0.8,
Ntype = "arm", upperN = 30, verbose = TRUE)
# Now analyze using binomial weights
PFrate <- migraine$painfree/migraine$ntrt
migraine$pfrat = migraine$painfree / migraine$ntrt
MCPModGen("binomial","logit",returnS = TRUE, w = "ntrt", dose = "dose",
resp = "pfrat", data = migraine, models = models, selModel = "aveAIC",
Delta = 0.2)
``` |

Embedding an R snippet on your website

Add the following code to your website.

For more information on customizing the embed code, read Embedding Snippets.