pmdc | R Documentation |
pmdd
measures conditional mean dependence of Y
given X
, adjusting for the dependence on Z
.
pmdc(X, Y, Z)
X |
A vector or matrix where rows represent samples and columns represent variables. |
Y |
A vector or matrix where rows represent samples and columns represent variables. |
Z |
A vector or matrix where rows represent samples and columns represent variables. |
Returns the squared partial martingale difference correlation of Y
given X
, adjusting for the dependence on Z
.
Park, T., Shao, X., and Yao, S. (2015). Partial martingale difference correlation. Electronic Journal of Statistics, 9(1), 1492-1517. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1214/15-EJS1047")}.
# Generate example data
set.seed(123)
n <- 50
x <- matrix(rnorm(n * 5), nrow = n) # explanatory variables
y <- matrix(rnorm(n), nrow = n) # response variable
z <- matrix(rnorm(n * 2), nrow = n) # conditioning variables
# Compute partial MDD
pmdd(x, y, z)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.