| Category | Badge |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Usage |
|
| Release |
|
| Development |
|
Anran Liu Email: anranliu@buffalo.edu
Raktim Mukhopadhyay Email: raktimmu@buffalo.edu
Marianthi Markatou Email: markatou@buffalo.edu
Anran Liu Email: anranliu@buffalo.edu
Raktim Mukhopadhyay Email: raktimmu@buffalo.edu
The documentation is hosted at - https://niuniular.github.io/MDDC/index.html
If you use this package in your research or work, please cite it as follows:
@misc{liu2024mddcrpythonpackage,
title={MDDC: An R and Python Package for Adverse Event Identification in Pharmacovigilance Data},
author={Anran Liu and Raktim Mukhopadhyay and Marianthi Markatou},
year={2024},
eprint={2410.01168},
archivePrefix={arXiv},
primaryClass={stat.CO},
url={https://arxiv.org/abs/2410.01168},
}
The work has been supported by Food and Drug Administration, and Kaleida Health Foundation.
Liu, A., Mukhopadhyay, R., and Markatou, M. (2024). MDDC: An R and Python package for adverse event identification in pharmacovigilance data. arXiv preprint. arXiv:2410.01168
Liu, A., Markatou, M., Dang, O., and Ball, R. (2024). Pattern discovery in pharmacovigilance through the Modified Detecting Deviating Cells (MDDC) algorithm. Technical Report, Department of Biostatistics, University at Buffalo.
Rousseeuw, P. J., and Bossche, W. V. D. (2018). Detecting deviating data cells. Technometrics, 60(2), 135-145.
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.