Description Usage Arguments Details Value Author(s) References See Also Examples
Uses multiple imputation to compute the cumulative incidence function for interval censored competing risks data
1 |
k |
An integer, indicates the number of iteration to perform |
m |
An integer, indicates the number of imputation to perform at each iteration |
status |
The name of the column where status are to be found |
trans |
Denomination of the event of interest in the status column |
data |
The input data (see details) |
conf.int |
Logical, computes the confidence interval |
cens.code |
Censor indicator in the status column of the data |
alpha |
Parametrize the confidence interval width |
This function uses a multiple imputation approach to estimate a cumulative incidence function for interval censored competing
risks data.
Estimates are computed using Rubin's rules (Rubin (1987)). The cumulative incidence is computed as the mean of
cumulative incidences over imputations. The variance is computed at each point by combining the within imputation variance and the
between imputation variance augmented by an inflation factor to take into account the finite number of imputations.
At each iteration, the cumulative incidence is updated and multiple imputation is performed using the updated estimate.
If conf.int
is required, the log-log transformation is used to compute the lower confidence interval.
Print and plot methods are available to handle results.
The data
must contain at last three columns: left
, right
and status
. For interval censored data, the
left
and right
columns indicates lower and upper bounds of intervals, respectively. Inf
in the
right
column stands for right censored observations. When an observation is right censored, the status
column must
contain the censor indicator specified by cens.code
. The transition of interest must be specified by the trans
parameter.
est
A data frame with estimates
...
Other objects
Marc Delord <mdelord@gmail.com>
Delord, M. & Genin, E. Multiple Imputation for Competing Risks Regression with Interval Censored Data Journal of Statistical Computation and Simulation, 2015
PAN, Wei. A Multiple Imputation Approach to Cox Regression with Interval-Censored Data. Biometrics, 2000, vol. 56, no 1, p. 199-203.
Rubin, D. B. (1987). Multiple imputation for nonresponse in surveys.
Schenker, N. and Welsh, A. (1988). Asymptotic results for multiple imputation. The Annals of Statistics pages 1550-1566.
Tanner, M. A. and Wong, W. H. (1987). An application of imputation to an estimation problem in grouped lifetime analysis. Technometrics 29, 23-32.
Wei, G. C., & Tanner, M. A. (1991). Applications of multiple imputation to the analysis of censored regression data. Biometrics, 47(4), 1297-1309.
Surv, survfit
1 2 3 4 5 |
Cumulative incidence estimation for interval censored data using data augmentation and multiple imputation
Call:
MI.ci(k = 5, m = 5, data = ICCRD, status = "status", trans = 1,
cens.code = 0, conf.int = TRUE, alpha = 0.05)
Interval-censored response for cumulative incidence estimation:
No.Observation: 150
Patern:
type
Cause exact interval-censored right-censored
1 0 64 0
2 37 0 0
unknown (right-censored) 0 0 49
$est
A 134 x 5 data frame of required estimates
time prev sd uci lci
1 0.000000000 0.000000000 0.000000000 0.000000e+00 0.000000000
3 0.009716295 0.001481481 0.003919217 5.358738e-07 0.009163005
4 0.021007201 0.002962963 0.004912195 3.819121e-05 0.012590687
5 0.022201890 0.002962963 0.004912195 3.819121e-05 0.012590687
6 0.126768750 0.002962963 0.004912195 3.819121e-05 0.012590687
7 0.150446887 0.005925926 0.004679300 9.731537e-04 0.015097186
Cumulative incidence estimation for interval censored data using data augmentation and multiple imputation
Call:
MI.ci(k = 5, m = 5, data = ICCRD, status = "status", trans = 1,
cens.code = 0, conf.int = TRUE, alpha = 0.05)
Interval-censored response for cumulative incidence estimation:
No.Observation: 150
Patern:
type
Cause exact interval-censored right-censored
1 0 64 0
2 37 0 0
unknown (right-censored) 0 0 49
$est
A 134 x 5 data frame of required estimates
time prev sd uci lci
1 0.000000000 0.000000000 0.000000000 0.000000e+00 0.000000000
3 0.009716295 0.001481481 0.003919217 5.358738e-07 0.009163005
4 0.021007201 0.002962963 0.004912195 3.819121e-05 0.012590687
5 0.022201890 0.002962963 0.004912195 3.819121e-05 0.012590687
6 0.126768750 0.002962963 0.004912195 3.819121e-05 0.012590687
7 0.150446887 0.005925926 0.004679300 9.731537e-04 0.015097186
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.