| one_step | R Documentation |
Maximum likelihood estimation of the regression model, treating the generated covariate as a noisy proxy for the true latent variable. This method is particularly useful when an estimate of the false positive rate is not available. The variance of the estimates is approximated via the inverse Hessian at the optimum.
one_step(
Y,
Xhat = NULL,
homoskedastic = FALSE,
distribution = c("normal", "t", "laplace", "gamma", "beta"),
nu = 4,
gshape = 2,
gscale = 1,
ba = 2,
bb = 2,
intercept = TRUE,
gen_idx = 1,
data = parent.frame(),
...
)
## Default S3 method:
one_step(
Y,
Xhat,
homoskedastic = FALSE,
distribution = c("normal", "t", "laplace", "gamma", "beta"),
nu = 4,
gshape = 2,
gscale = 1,
ba = 2,
bb = 2,
intercept = TRUE,
gen_idx = 1,
...
)
## S3 method for class 'formula'
one_step(
Y,
Xhat = NULL,
homoskedastic = FALSE,
distribution = c("normal", "t", "laplace", "gamma", "beta"),
nu = 4,
gshape = 2,
gscale = 1,
ba = 2,
bb = 2,
intercept = TRUE,
gen_idx = 1,
data = parent.frame(),
...
)
Y |
numeric response vector, or a one-sided formula |
Xhat |
numeric matrix of regressors (if |
homoskedastic |
logical; if |
distribution |
character; distribution for error terms. One of |
nu |
numeric; degrees of freedom (for Student-t distribution) |
gshape |
numeric; shape parameter (for Gamma distribution) |
gscale |
numeric; scale parameter (for Gamma distribution) |
ba |
numeric; alpha parameter (for Beta distribution) |
bb |
numeric; beta parameter (for Beta distribution) |
intercept |
logical; if |
gen_idx |
integer; index (1-based) of the binary ML-generated variable. If not specified, defaults to the first non-intercept variable |
data |
data frame (if |
... |
unused |
An object of class mlbc_fit and mlbc_onestep with:
coef: estimated regression coefficients
vcov: variance-covariance matrix
Option 1: Formula Interface
Y: A one-sided formula string
data: Data frame containing the variables referenced in the formula
Option 2: Array Interface
Y: Response variable vector
Xhat: Design matrix of covariates
# Load the remote work dataset
data(SD_data)
# Basic one-step estimation
fit_onestep <- one_step(log(salary) ~ wfh_wham + soc_2021_2 + employment_type_name,
data = SD_data)
summary(fit_onestep)
# With different error distribution
fit_t <- one_step(log(salary) ~ wfh_wham + soc_2021_2,
data = SD_data,
distribution = "t",
nu = 4)
summary(fit_t)
# Homoskedastic errors
fit_homo <- one_step(log(salary) ~ wfh_wham + soc_2021_2,
data = SD_data,
homoskedastic = TRUE)
summary(fit_homo)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.