This package implements 7 copulas for supervised classification: frank, gaussian, clayton, joe, gumbel, AMH and grid. The classification model is based on the Bayes theorem, similar to the naive Bayes classifier model, but does not assume that the features are independent.
The probability of a class given a set of characteristics (predictor variables) is:
$$P(A|x_1,..x_d) \alpha \prod_{i = 1}^{d}f_{X_i|A}(x_i)c(u_1,...,u_i)$$
where each $u_i = F_{X_i|A}(x_i)$ with $i = 1,2,..d$.
The copula density function $c(u_1,..u_i)$ is modeled by bivariate copula functions, using graphical models (trees and chains)
For more details and visualization of the copulas, go to https://abrahammontoyacalzada.shinyapps.io/Copulas/
Frank copula:
$$C(u_1,u_2;\theta) = -\frac{1}{\theta} ln \left[ 1 + \frac{(e^{-\theta u_1} - 1) (e^{-\theta u_2} - 1) } {e^{-\theta} - 1} \right]$$
with $\theta \in (-\infty,\infty)/0$
This copula has no upper nor lower tail dependency.
Clayton copula:
$$C(u_1,u_2;\theta) = \left( u_1^{-\theta} + u_2^{-\theta} - 1 \right)^{-1/\theta}$$
with $\theta \in [-1,\infty)/0$
When $\theta \geq 0$ has lower tail dependence equal to $\lambda_L = 2^{-1/\theta}$
Gaussiana (Normal) copula $$C(u_1,u_2;\theta) = \Phi_G (\Phi^{-1} (u_1) , \Phi^{-1} (u_2) )$$
with $\theta \in (-1,1)$
This copula has no upper nor lower tail dependency.
Joe copula $$C(u_1,u_2) = 1 - \left[ (1 - u_1)^\theta + (1 - u_2)^\theta - (1 - u_1)^\theta (1 - u_2)^\theta \right ] ^ {1/\theta}$$
with $\theta \in [1,\infty)$
This copula has upper tail dependence equal to $\lambda_U = 2 - 2^{1/\theta}$
Gumbel copula
$$C(u_1,u_2) = exp \left[ - \left[ ( -ln(u_1) )^\theta + ( -ln(u_2) )^\theta \right]^{1/\theta} \right]$$
with $\theta \in [1,\infty)$
This copula has upper tail dependence equal to $\lambda_U = 2 - 2^{1/\theta}$
Ali–Mikhail–Haq copula
$$C(u_1,u_2) = \frac{u_1 u_2}{1 - \theta (1 - u_1)(1- u_2)}$$
with $\theta \in [-1,1)$
This copula has no upper nor lower tail dependency.
library(MLCOPULA)
X <- iris[,1:4]
y <- iris$Species
model <- copulaClassifier(X = X, y = y, copula = "frank",
distribution = "kernel", graph_model = "tree")
y_pred <- copulaPredict(X = X, model = model)
table(y,y_pred$class)
#Example 2
X <- iris[,1:4]
y <- iris$Species
model <- copulaClassifier(X = X, y = y, copula = c("frank","clayton"),
distribution = "kernel", graph_model = "chain")
y_pred <- copulaPredict(X = X, model = model)
table(y,y_pred$class)
Salinas-Gutiérrez, R., Hernández-Aguirre, A., Villa-Diharce, E.R. (2014). Copula selection for graphical models in continuous Estimation of Distribution Algorithms. Computational Statistics, 29(3–4):685–713. https://doi.org/10.1007/s00180-013-0457-y
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.