MLmetrics: Machine Learning Evaluation Metrics

A collection of evaluation metrics, including loss, score and utility functions, that measure regression, classification and ranking performance.

AuthorYachen Yan [aut, cre]
Date of publication2016-05-13 23:57:26
MaintainerYachen Yan <yanyachen21@gmail.com>
LicenseGPL-2
Version1.1.1
http://github.com/yanyachen/MLmetrics

View on CRAN

Functions

Accuracy Man page
Area_Under_Curve Man page
AUC Man page
ConfusionDF Man page
ConfusionMatrix Man page
F1_Score Man page
FBeta_Score Man page
GainAUC Man page
Gini Man page
KS_Stat Man page
LiftAUC Man page
LogLoss Man page
MAE Man page
MAPE Man page
MedianAE Man page
MedianAPE Man page
MLmetrics Man page
MLmetrics-package Man page
MSE Man page
MultiLogLoss Man page
NormalizedGini Man page
Poisson_LogLoss Man page
PRAUC Man page
Precision Man page
R2_Score Man page
RAE Man page
Recall Man page
RMSE Man page
RMSLE Man page
RMSPE Man page
RRSE Man page
Sensitivity Man page
Specificity Man page
ZeroOneLoss Man page

Questions? Problems? Suggestions? or email at ian@mutexlabs.com.

Please suggest features or report bugs with the GitHub issue tracker.

All documentation is copyright its authors; we didn't write any of that.