mn.mle: Maximum likelihood estimation of the the matrix normal...

View source: R/mn.mle.R

Maximum likelihood estimation of the the matrix normal distributionR Documentation

Maximum likelihood estimation of the the matrix normal distribution

Description

Maximum likelihood estimation of the the matrix normal distribution.

Usage

mn.mle(X)

Arguments

X

A list with k elements (k is the sample size), k matrices of dimension n \ times p each.

Value

A list including:

runtime

The runtime required for the whole fitting procedure.

iters

The number of iterations required for the estimation of the U and V matrices.

M

The estimated mean matrix of the distribution, a numerical matrix of dimensions n \times p.

U

The estimated covariance matrix associated with the rows, a numerical matrix of dimensions n \times n.

V

The estimated covariance matrix associated with the columns, a numerical matrix of dimensions p \times p.

Author(s)

Michail Tsagris.

R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

https://en.wikipedia.org/wiki/Matrix_normal_distribution#Definition

Pocuca N., Gallaugher M. P., Clark K. M. & McNicholas P. D. (2019). Assessing and Visualizing Matrix Variate Normality. arXiv:1910.02859.

See Also

dmn, rmn, ddplot

Examples

M <- as.matrix(iris[1:8, 1:4])
U <- cov( matrix( rnorm(100 * 8), ncol = 8 ) )
V <- cov( iris[1:50, 1:4] )
X <- rmn(200, M, U, V)
mod <- mn.mle(X)

MN documentation built on June 22, 2024, 11:07 a.m.