Nothing
#' @title abdat A list of fishery data for blacklip abalone
#'
#' @description A dataset of fishery data for blacklip abalone
#' (\emph{Haliotis rubra}) from part of the Tasmanian west coast
#' for the years 1985 - 2008. It contains a data.frame containing
#' the year, the catch, and the standardized CPUE from four
#' statistical blocks of Tasmania's west coast combined. In
#' particular, it can be used when fitting a surplus production
#' model. Workable initial parameter values, before log-transformation
#' might be: r= 0.4, K=9400, Binit=3400, sigma=0.05 for the
#' Schaefer version, while these also work for the Fox model
#' one could more efficiently use r=0.3, K=12000, Binit=4000, sigma=0.05.
#'
#' @name abdat
#'
#' @docType data
#'
#' @format A data.frame of three columns
#' \describe{
#' \item{year}{the annual year in which the catches occurred}
#' \item{catch}{the reported landed catch in tonnes, to the nearest kilogram}
#' \item{cpue}{the standardized catch-per-unit-effort for this dive fishery}
#' }
#'
#' @section Subjects:
#' \itemize{
#' \item Surplus Production Modelling, Schaefer and Fox models
#' \item Model fitting using maximum likelihood
#' \item Uncertainty examples
#' }
#'
#' @source Catch data from Mundy, C. and J. McAllister (2019) Tasmanian abalone fishery assessment 2018, Institute for Marine and Antarctic Studies, University of Tasmania, 190p. ISBN: 978-1-925646-46-7. The cpue data is an unpublished early attempt at standardizing the cpue data with respect to month, block, and diver. Many more details are now included in such analyses.
#'
#' @examples
#' data(abdat)
#' print(abdat)
#' oldpar <- par(no.readonly=TRUE)
#' plot(abdat$year,abdat$cpue, type="l",xlab="year",ylab="CPUE",
#' panel.first=grid())
#' points(abdat$year,abdat$cpue,pch=16,cex=1.2)
#' par(oldpar)
NULL
#' @title blackisland tagging data from a blacklip abalone population
#'
#' @description A 108 x 4 data.frame containing dt, the time
#' in years between tagging and recapture, l1 the shell length
#' at tagging, and l2, the length at recapture, with the growth
#' increment, dl as the last column. This data can be used to
#' estimate the growth characteristics of
#' abalone from the Black Island site, which is on the south west
#' coast of Tasmania, Australia. The mean time
#' interval between tagging and recapture is 1 year and 1 week,
#' 1.02 years, which reflects the practical problems of taking a
#' vessel around the bottom of Tasmania, where it is essential to
#' wait on suitable weather for such sub-tidal field work.
#'
#' @name blackisland
#'
#' @docType data
#'
#' @format A data.frame of four columns
#' \describe{
#' \item{dt}{the time between tagging and recapture, in years}
#' \item{l1}{the shell length when tagged in mm}
#' \item{l2}{the shell length at recapture in mm}
#' \item{dl}{the growth increment between tagging and recapture
#' in mm; there are zero values.}
#' }
#'
#' @section Subjects:
#' \itemize{
#' \item Tagging data
#' \item Estimation of individual growth
#' \item Binomial likelihoods
#' \item Faben's version of the von Bertalanffy curve
#' }
#'
#' @source Thanks to Dr Craig Mundy and the abalone team at the Institute of
#' Marine and Antarctic Studies, of the University of Tasmania for the use
#' of this data.
#'
#' @examples
#' data(blackisland)
#' print(head(blackisland,20))
#' oldpar <- par(no.readonly=TRUE)
#' plot(blackisland$l1,blackisland$dl,type="p",pch=16,
#' xlab="Initial Length mm",ylab="Growth Increment mm",
#' panel.first=grid())
#' abline(h=0)
#' par(oldpar)
NULL
#' @title dataspm A data.frame of fisheries catch and cpue data
#'
#' @description A data.frame containing 31 years of catch, standardized
#' cpue, number of records, and the unstandardized geometric mean
#' cpue for Pink Ling (\emph{Genypterus blacodes}). The fisheries data can
#' be used in the surplus production modelling in Chapter 7. Initial
#' parameter estimates very close to the optimum values could be
#' param <- log(c(r=0.25, K=5500, Binit=3000,sigma=0.2)) for the Schaefer
#' model and log(c(r=0.15, K=6500, Binit=3000, sigma=0.2)) for the Fox model
#'
#' @name dataspm
#'
#' @docType data
#'
#' @format A 31 x 5 data.frame
#' \describe{
#' \item{year}{the year from 1986 t0 2016}
#' \item{catch}{the catch in tonnes to the nearest 100kg}
#' \item{cpue}{the standardized cpue scaled to the mean of the series}
#' \item{records}{the number of records making up the yearly totals}
#' \item{geom}{the naive geometric mean cpue of the raw data as kg/hr, also
#' rescaled to the mean of the series}
#' }
#'
#' @section Subjects:
#' \itemize{
#' \item Fishery data-set
#' \item Surplus Production Modelling
#' \item Log-Normal likelihoods
#' }
#'
#' @source Haddon, M. and M. Sporcic (2017) Catch rate standardizations for
#' selected SESSF Species (data to 2016) pp 43-406 in Tuck, G.N.
#' (\emph{ed}) \emph{Stock Assessment for the Southern and Eastern scalefish
#' and shark fishery 2016 and 2017.} 837 pp. ISBN 978-1-4863-1012-8 data
#' extracted from Table 7.96 PinkLing4050 page 216.
#'
#' @examples
#' data(dataspm)
#' oldpar <- par(no.readonly=TRUE)
#' plot(dataspm$year,dataspm$geom,type="l",lwd=2,xlab="Year",
#' ylab="CPUE",panel.first=grid())
#' lines(dataspm$year,dataspm$cpue*mean(dataspm$geom),lwd=2,col=2)
#' legend("topright",c("cpue","geom"), col=c(1,2), lwd=3, bty="n",
#' cex=1.2)
#' par(oldpar)
NULL
#' @title LatA Simulated length-at-age for 358 female fish
#'
#' @description A data.frame containing the simulated
#' age for an array of different lengths based upon the properties
#' of an extensive collection of redfish (\emph{Centroberyx affinis})
#' length-at-age data from eastern Australia sampled in the 1990's.
#'
#' @name LatA
#'
#' @docType data
#'
#' @format A data.frame with 358 rows and 2 variables:
#' \describe{
#' \item{age}{simulated ages in years}
#' \item{length}{consequent simulated fork length of the fish, in cms}
#' }
#'
#' @section Subjects:
#' \itemize{
#' \item Estimating individual growth from length-at-age data
#' \item von Bertalanffy growth curve
#' \item Gompertz growth curve
#' \item Michaelis-Menton curve used as a growth curve
#' }
#'
#' @source The data this simulation is based upon is from length-at-age
#' data for one species collected over many years by the many
#' excellent people running the Integrated Stock Monitoring Program
#' in the Australian South East Fishery over the years of its
#' existence. The simulation is based on a characterization of
#' redfish properties and includes random error in the hypothetical
#' measurements as well as the processes of growth (i.e. both
#' measurement and process error). The other inputs were a selected
#' set of growth parameters and the relative frequency of different
#' ages vs lengths.
#'
#' @examples
#' data(LatA)
#' pars <- c(27.0,0.15,-2.0) # von Bertalanffy
#' bestvB <- nlm(f=ssq,funk=vB,observed=LatA$length,p=pars,
#' ages=LatA$age,typsize=magnitude(pars))
#' outfit(bestvB,backtran=FALSE,title="vB")
NULL
#' @title minnow contains weekly growth data for use with seasonal growth curves
#'
#' @description minnow is a dataset of mean length against time in weeks for
#' minnows (\emph{Phoxinus phoxinus}), derived from Pitcher &
#' Macdonald (1973) for use when fitting growth curves, especially
#' seasonal growth curves. The data exhibit increases and decreases
#' in length as each year progresses because these are mean lengths
#' rather than individual measurements (which would, more typically,
#' be used these days). The data have been read off a graph within
#' the original paper as it is not reported explicitly, and are
#' therefore only approximate, but will do for our purposes (but
#' expect different parameters to those reported in the original
#' paper). This is length at time not age. Though time is being
#' used as a proxy for age there is no age 0.
#'
#' @name minnow
#'
#' @docType data
#'
#' @format A data.frame of mean length-at-time data
#' \describe{
#' \item{week}{the week of sampling minnows for lengths}
#' \item{length}{the estimated mean length in the corresponding week in mm}
#' }
#'
#' @section Subjects:
#' \itemize{
#' \item seasonal growth curves
#' \item von Bertalanffy
#' \item Model residuals
#' }
#'
#' @source data measured from Figure 2, page 602 in Pitcher, T.J., and P.D M. MacDonald. (1973)
#' Two models of seasonal growth. \emph{Journal of Applied Ecology} 10:599–606.
#'
#' @examples
#' data(minnow)
#' oldpar <- par(no.readonly=TRUE)
#' plot1(minnow$week,minnow$length,type="p",pch=16,cex=1.2,
#' xlab="Week",ylab="Length mm")
#' par(oldpar)
NULL
#' @title npf fishery catch data from Northern Prawn Fishery 1970-1992
#'
#' @description npf is fishery catch data from Australia's Northern
#' Prawn Fishery from 1970 to 1992 summarized from Robins and
#' Somers, 1994. It contains the catches, in tonnes,
#' of banana prawns (\emph{Penaeus merguiensis} and \emph{P. indicus}),
#' tiger prawns (brown - \emph{P. esculentus}) and (grooved - \emph{P.
#' semisulcatus}), endeavour prawns, (\emph{Metapenaeus endeavouri} and
#' \emph{M. ensis}), king prawns (\emph{P. latisulcatus} and
#' \emph{P. longistylus}), the number of vessels fishing, and
#' the annual effort as boat-days.
#'
#' @name npf
#'
#' @docType data
#'
#' @format A data.frame of fisheries data
#' \describe{
#' \item{year}{the fishing year from 1970 - 1992.}
#' \item{banana}{banana prawn catches, tonnes.}
#' \item{tiger}{tiger prawn catches, tonnes.}
#' \item{endevaour}{endeavour prawn catches, tonnes.}
#' \item{king}{king prawn catches, tonnes.}
#' \item{boats}{the number of vessels fishing in that year.}
#' \item{boatday}{the total annual effort as boatdays.}
#' }
#'
#' @section Subjects:
#' \itemize{
#' \item correlation analysis and regression
#' \item Bootstrap percentile confidence intervals
#' \item Model residuals
#' }
#'
#' @source Robins, C. and I. Somers (1994) Appendix A. Fishery
#' Statistics pp 141 - 164 in Pownall, P.C. (ed.) Australia's
#' Northern Prawn Fishery: The first 25 years. NPF25. Cleveland,
#' Australia. 179p.
#' @examples
#' data(npf)
#' npf
#' oldpar <- par(no.readonly=TRUE)
#' plot1(npf$year,npf$tiger,xlab="Year",ylab="Tonnes",lwd=2)
#' lines(npf$year,npf$endeavour,col=2,lwd=2)
#' legend("topleft",c("Tiger","Endeavour"),col=c(1,2),lwd=3,
#' bty="n",cex=1.5)
#' par(oldpar)
NULL
#' @title pttuna is yellowfin tuna fishery data from Pella-Tomlinson 1969
#'
#' @description pttuna is yellowfin tuna fishery data from Pella-Tomlinson's
#' (1969) classical paper describing their generalized surplus production
#' model. This is the same data as contained in the schaef data-set, except
#' it is extended from 1934 - 1967. Some of the values are slightly
#' different, and their table rounds off the cpue estimates slightly
#' differently but the catch and effort figures are theirs. It contains
#' the year, the catch, the effort, and the cpue (which is just the total
#' catch divided by the total effort, a ratio estimate). Initial parameter
#' estimates close to the optimum values for the Schaefer model could be
#' param <- log(c(r=0.28,K=2100000,Binit=2400000,sigma=0.16)). With this
#' longer time-series the eventual MSY estimate was somewhat larger than
#' when just the schaef data are used.
#'
#' @name pttuna
#'
#' @docType data
#'
#' @format A data.frame of fisheries data
#' \describe{
#' \item{year}{the fishing year from 1934 - 1967}
#' \item{catch}{the total annual catch, '000s of pounds }
#' \item{effort}{the total effort as standard class 4 baitboat fishing days}
#' \item{cpue}{the catch '000 pounds per standard class 4 day, a ratio cpue}
#' }
#'
#' @section Subjects:
#' \itemize{
#' \item surplus production modelling
#' \item classical fisheries data
#' \item Log-Normal likelihoods
#' }
#'
#' @source from Table 6 page 457 in Pella, J.J. and P.K. Tomlinson (1969) A
#' Generalized Stock Production Model. \emph{Bulletin, Inter-American
#' Tropical Tuna Commission} 13(3): 421-458. Obtainable from
#' \emph{https://www.iattc.org/BulletinsENG.htm}
#'
#' @examples
#' data(pttuna)
#' pars <- log(c(r=0.25,K=2.1e06,Binit=2.2e06,sigma=0.2))
#' answer <- fitSPM(pars,pttuna,schaefer=TRUE,maxiter=1000)
#' outfit(answer,title="Pella-Tomlinson Data",digits=4)
NULL
#' @title schaef is yellowfin tuna fishery data from Schaefer 1957
#'
#' @description schaef is yellowfin tuna fishery data from Schaefer
#' (1957) It contains the year, the catch, the effort, and the cpue
#' and was used in one of the first descriptions of a stock
#' assessment that used a surplus production model. The catch-per-
#' unit-effort, cpue, is a ratio cpue of the total catch divided by
#' the total effort as thousands of pounds per day. These days such
#' ratios tend not to be used, with individual records
#' for each day's effort being used instead. Using individual records
#' does not obscure the variation between different
#' vessels, areas, depths, and seasons. Initial parameter estimates
#' close to the optimum values for both the Schaefer model and the
#' Fox model could be
#' param <- log(c(r=0.24,K=2100000,Binit=2200000,sigma=0.2))
#'
#' @name schaef
#'
#' @docType data
#'
#' @format A data.frame of fisheries data
#' \describe{
#' \item{year}{the fishing year from 1934 - 1955}
#' \item{catch}{the total annual catch, '000s of pounds }
#' \item{effort}{the total effort as standard class 4 clipper fishing days}
#' \item{cpue}{the catch '000 pounds per standard class 4 day, a ratio cpue}
#' }
#'
#' @section Subjects:
#' \itemize{
#' \item surplus production modelling
#' \item classical fisheries data
#' \item Log-Normal likelihoods
#' }
#'
#' @source from Table 1 page 266 in Schaefer, M.B. (1957) A study of the dynamics of the
#' fishery for yellowfin tuna in the Eastern Tropical Pacific Ocean.
#' Bulletin, Inter-American Tropical Tuna Commission 2: 247-285. Obtainable from
#' \emph{https://www.iattc.org/BulletinsENG.htm}
#'
#' @examples
#' data(schaef)
#' pars <- log(c(r=0.2,K=2.1e06,Binit=2.2e06,sigma=0.2))
#' answer <- fitSPM(pars,schaef,schaefer=TRUE,maxiter=1000)
#' outfit(answer,title="Schaefer, 1957 Data",digits=4)
NULL
#' @title tasab is a matrix of abalone maturity-at-length data
#'
#' @description tasab is a 715 x 4 matrix of maturity-at-length data
#' for blacklip abalone (\emph{Haliotis rubra}) from two sites
#' along the Tasmanian west coast. All data was collected in
#' February 1995, but details, such as site name, accurate
#' location, statistical block, year, month, and other
#' details have been omitted for brevity. See section on maturity
#' within the Static Models chapter for detailed use of this
#' data-set.
#'
#' @name tasab
#'
#' @docType data
#'
#' @format A data.frame of maturity-at-length data
#' \describe{
#' \item{site}{an identifier for the two different sites sampled}
#' \item{sex}{I = immature, M = male, F = female}
#' \item{length}{the shell length in mm}
#' \item{mature}{was the animal mature = 1 or not = 0}
#' }
#'
#' @section Subjects:
#' \itemize{
#' \item maturity ogives or logistic curves
#' \item Binomial likelihoods
#' }
#'
#' @source Many thanks to the Institute of Marine and Antarctic Science,
#' which is part of the University of Tasmania, and especially to
#' Dr Craig Mundy, leader of the Abalone Group, for permission to use
#' this data collected in February 1995.
#'
#' @examples
#' data(tasab)
#' head(tasab,20)
#' table(tasab$site,tasab$sex)
NULL
#' @title tigers is tiger prawn recruitment data from Penn & Caputi 1986
#'
#' @description tigers is a dataset of only 14 rows of data with a
#' column of Spawning index and Recruitment index, as a data.frame.
#' The timing of the recruitment index is up to half a year after
#' the spawning index.
#'
#' @name tigers
#'
#' @docType data
#'
#' @format A data.frame of spawning recruitment data
#' \describe{
#' \item{Spawn}{the estimated spawning biomass index in a year (Aug - Oct)}
#' \item{Recruit}{estimated recruitment from the biomass in each year (Mar - May)}
#' }
#'
#' @section Subjects:
#' \itemize{
#' \item Stock-recruitment curves
#' \item Beverton-Holt and Ricker Models
#' \item Static model fitting
#' }
#'
#' @source Extracted from Table 2, page 496 of Penn, J.W. and N. Caputi
#' (1986) Spawning stock-recruitment relationships and environmental
#' influences on the tiger prawn (\emph{Penaeus esculentus}) fishery
#' in Exmouth Gulf, Western Australia. \emph{Australian Journal of
#' Marine and Freshwater Research} 37: 491-505. Sorted on spawning index.
#'
#' @examples
#' data(tigers)
#' tigers
#' oldpar <- par(no.readonly=TRUE)
#' plot1(tigers$Spawn,tigers$Recruit,type="p",pch=16,cex=1.25)
#' par(oldpar)
NULL
#' @title twoindex has orange roughy catches with hypothetical cpue
#'
#' @description twoindex is a 35 x 4 data.frame of fishery data made
#' up of smoothed real catches but two simulated indices of relative
#' abundance. This data-set is designed to be used to illustrate
#' the implementation of surplus production models when there are
#' more than one time-series of relative abundance indices. This is not
#' currently implemented in the book but is put here for use by readers
#' should they wish to pursue this approach. The
#' indices have been designed to generate a workable answer but also
#' require the use of a penalty on harvest rates to avoid massively
#' inflated harvest rates well above 1. Instead of using simpspm,
#' spm, and negLL1, we need to use simpspmM, spmCE, and negLLM.
#' The cpue series are hypothetical and have been designed to
#' illustrate the use of penalty1 and the use of multiple indices
#' of relative abundance. The real stock assessment uses acoustic
#' survey indices and also uses many years of age composition data
#' inside Stock Synthesis 3, not surprisingly the inclusion of real
#' time-series of indices and of age-composition data leads to very
#' different results.
#'
#' @name twoindex
#'
#' @docType data
#'
#' @format A data.frame of fishery data
#' \describe{
#' \item{year}{the calender year of fishing}
#' \item{catch}{the reported catch in tonnes}
#' \item{cpue1}{the first index of relative abundance}
#' \item{cpue2}{the second index of relative abundance}
#' }
#'
#' @section Subjects:
#' \itemize{
#' \item Surplus production models
#' \item Dynamic model fitting
#' \item -ve log-likelihoods
#' }
#'
#' @source Catches extracted from Table 4, page 11 of Haddon, M. (2017)
#' Orange Roughy East (Hoplostethus atlanticus) stock assessment
#' using data to 2016 Report to November 2017 SE RAG meeting. CSIRO,
#' Oceans and Atmosphere, Australia. 51p. from
#' https://www.afma.gov.au/fisheries-management/species/orange-roughy
#' Catch data extended to 2019 using AFMA's catchwatch system.
#'
#' @examples
#' data(twoindex)
#' fish <- as.matrix(twoindex)
#' pars <- log(c(0.04,155000,0.4,0.3))
#' bestSP <- nlm(f=negLLM,p=pars,funk=simpspmM,indat=fish,
#' schaefer=TRUE,logobs=log(fish[,c("cpue1","cpue2")]),
#' steptol=1e-06,harvpen=TRUE)
#' namepar <- c("r", "K", "Binit","sigma")
#' outfit(bestSP,parnames=namepar) # best fitting estimates
#' # if 'Either ~local min or steptol too small try 'steptol=1e-05'
#' # plotprep(width=7,height=5,newdev=FALSE) # for external plot
#' answer <- plotspmmod(bestSP$estimate,indat=fish,
#' plotprod=TRUE,maxy=3.4)
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.