Nothing
#' @title Multi-reader multi-case dataset
#'
#' @description Example data from a study comparing the relative performance of cinematic presentation of magnetic resonance imaging (CINE MRI) to single spin-echo magnetic resonance imaging (SE MRI) for the detection of thoracic aortic dissection (Van Dyke et al., 1993).
#'
#' @format A data frame with 1140 rows and 7 variables:
#' \describe{
#' \item{reader}{Reader identifier for the five radiologists}
#' \item{treatment}{Treatment identifier for the two imaging modalities}
#' \item{case}{Case identifiers for 114 cases}
#' \item{case2}{Case identifier (cases nested within readers)}
#' \item{case3}{Case identifier (cases nested within treatments)}
#' \item{truth}{
#' Indicator for thoracic aortic dissection (i.e., true disease status):
#' 1 = performed (i.e., patients with aortic dissection imaged with both SE MRI and CINE MRI) or
#' 0 = not performed (i.e., patients without dissection imaged with both SE MRI and CINE MRI)
#' }
#' \item{rating}{
#' Five-point ratings given to case images by the radiologists (i.e., diagnostic test result):
#' 1 = definitely no aortic dissection, 2 = probably no aortic dissection, 3 = unsure about aortic dissection, 4 = probably aortic dissection, or 5 = definitely aortic dissection
#' }
#' }
#'
#' @details This example compares the relative performance of SE MRI with the CINE MRI in detecting thoracic aortic dissection.
#' There are 45 patients with an aortic dissection and 69 patients without a dissection imaged with both SE MRI and CINE MRI.
#' One can directly use this data from \code{MRMCaov} package. See \bold{Source}.
#'
#' @references
#' Van Dyke, C. W., White, R. D., Obuchowski, N. A., Geisinger, M. A., Lorig, R. J., & Meziane, M. A. (1993). Cine MRI in the diagnosis of thoracic aortic dissection. 79th RSNA Meetings. *Chicago, IL*, 28.
#'
#' @source This data are available at <https://perception.lab.uiowa.edu> and <https://github.com/brian-j-smith/MRMCaov/tree/master/data>.
#'
#' @examples
#' ## Load example data
#' data(VanDyke)
#'
#' ## Return the first parts of an object
#' head(VanDyke)
#'
#' ## Extract unique modalities
#' unique(VanDyke$treatment)
#'
#' ## Extract Unique readers
#' unique(VanDyke$reader)
#'
#' ## Create binary test results (Y_ijk)
#' VanDyke$Y <- as.numeric(VanDyke$rating >= 3)
#'
#' @keywords datasets
"VanDyke"
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.