View source: R/mcee_helper_estimation.R
mcee_helper_stage2_estimate_mcee | R Documentation |
Computes the Natural Direct Excursion Effect (NDEE; \alpha
) and Natural Indirect
Excursion Effect (NIEE; \beta
) parameters using Stage-1 nuisance predictions.
This is Stage 2 of the two-stage MCEE procedure.
mcee_helper_stage2_estimate_mcee(
data,
id_var,
dp_var,
outcome_var,
treatment_var,
avail_var = NULL,
p1,
p0,
q1,
q0,
eta1,
eta0,
mu1,
mu0,
nu1,
nu0,
omega_nrows,
f_nrows
)
data |
Data frame in long format. |
id_var , dp_var , outcome_var , treatment_var , avail_var |
Character column names. |
p1 , p0 , q1 , q0 , eta1 , eta0 , mu1 , mu0 , nu1 , nu0 |
Numeric vectors of length |
omega_nrows |
Numeric vector of length |
f_nrows |
Numeric matrix with |
**MCEE Estimating Equations:**
The function constructs influence functions \phi_t^{11}
, \phi_t^{10}
, \phi_t^{00}
for each row and
solves the estimating equations:
**NDEE (\alpha
)**: \sum_{i,t}\omega(i,t) [\phi_t^{10} - \phi_t^{00}] f(t) = 0
**NIEE (\beta
)**: \sum_{i,t}\omega(i,t) [\phi_t^{11} - \phi_t^{10}] f(t) = 0
**Influence Functions:**
- \phi_t^{11}
: Direct effect pathway influence function
- \phi_t^{10}
: Mediated effect pathway influence function
- \phi_t^{00}
: Control/reference pathway influence function
**Variance Estimation:** Uses sandwich variance estimation with subject-level clustering. The variance accounts for the two-stage estimation uncertainty.
List containing MCEE parameter estimates and inference:
alpha_hat
Vector of length p
: NDEE parameter estimates
alpha_se
Vector of length p
: NDEE standard errors
beta_hat
Vector of length p
: NIEE parameter estimates
beta_se
Vector of length p
: NIEE standard errors
varcov
Matrix 2p \times 2p
: Joint variance-covariance for (\alpha,\beta)
alpha_varcov
Matrix p \times p
: Variance-covariance for \alpha
beta_varcov
Matrix p \times p
: Variance-covariance for \beta
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.