bootstrapMSmix | R Documentation |
Return the bootstrap confidence intervals for the parameters of a mixture of Mallows models with Spearman distance fitted on partial rankings.
plot
method for class "bootMSmix"
.
bootstrapMSmix(
object,
n_boot = 50,
type = (if (object$em_settings$n_clust == 1) "non-parametric" else "soft"),
conf_level = 0.95,
all = FALSE,
n_start = 10,
parallel = FALSE
)
## S3 method for class 'bootMSmix'
plot(x, ...)
object |
An object of class |
n_boot |
Number of desired bootstrap samples. Defaults to 50. |
type |
Character indicating which bootstrap method must be used. Available options are: |
conf_level |
Numeric: value in the interval (0,1] indicating the desired confidence level of the interval estimates. Defaults to 0.95. |
all |
Logical: whether the bootstrap samples of the MLEs for all the parameters must be returned. Defaults to |
n_start |
Number of starting points for the MLE on each bootstrap sample. Defaults to 10. |
parallel |
Logical: whether parallelization over multiple initializations of the EM algorithm must be used. Used when |
x |
An object of class |
... |
Further arguments passed to or from other methods (not used). |
When n_clust = 1
, two types of bootstrap are available: 1) type = "non-parametric"
(default);
type = "parametric"
, where the latter supports full rankings only.
When n_clust > 1
, two types of bootstrap are available: 1) type = "soft"
(default), which is
the soft-separated bootstrap (Crispino et al., 2025+) and returns confidence intervals for all
the parameters of the mixture of Mallows models with Spearman distance; 2) type = "separated"
, which is the separated bootstrap
(Taushanov and Berchtold, 2019) and returns bootstrap samples for the component-specific
consensus rankings and precisions.
An object of class "bootMSmix"
, namely a list with the following named components:
itemwise_ci_rho
Character G
\times
n
matrix with the bootstrap itemwise confidence intervals for the component-specific consensus rankings.
ci_boot_theta
Numeric G
\times
2
matrix with the bootstrap confidence intervals for the component-specific precisions.
ci_boot_weights
Numeric G
\times
2
matrix with the bootstrap confidence intervals for the mixture weights. Returned when n_clust > 1
and type = "soft"
, otherwise NULL
.
boot
List containing all the n_boot
bootstrap MLEs. Returned when all = TRUE
, otherwise NULL
.
The boot
sublist contains the following named components:
rho_boot
List of length n_clust
. Each element is an integer n_boot
\times
n_items
matrix with rows containing the bootstrap MLEs of a component-specific consensus ranking.
theta_boot
Numeric n_boot
\times
n_clust
matrix with the bootstrap MLEs of the component-specific precision parameters in each row.
weights_boot
Numeric n_boot
\times
n_clust
matrix with the bootstrap MLEs of the mixture weights in each row. Returned when n_clust > 1
and type = "soft"
, otherwise NULL
.
A list of 3 labelled plots, namely: i) rho_heatmap
: a heatmap for the component-specific bootstrap consensus ranking estimates (when n_clust > 1
, this is in turn a list of heatmaps for each consensus ranking estimate); ii) theta_density
: a kernel density plot for the component-specific bootstrap precision estimates; iii) weights_density
: a kernel density plot for the bootstrap mixture weight estimates is returned when n_clust > 1
and the object x
was obtained from the bootstrapMSmix
routine with the argument type = "soft"
, otherwise NULL
.
Crispino M, Mollica C and Modugno L (2025+). MSmix: An R Package for clustering partial rankings via mixtures of Mallows Models with Spearman distance. (submitted)
Taushanov Z and Berchtold A (2019). Bootstrap validation of the estimated parameters in mixture models used for clustering. Journal de la société française de statistique, 160(1).
Efron B (1982). The Jackknife, the Bootstrap, and Other Resampling Plans. Philadelphia, Pa. :Society for Industrial and Applied Mathematics.
## Example 1. Compute the bootstrap 95% confidence intervals for the Antifragility dataset.
# Let us assume no clusters.
r_antifrag <- ranks_antifragility[, 1:7]
set.seed(12345)
fit <- fitMSmix(rankings = r_antifrag, n_clust = 1, n_start = 1)
# Apply non-parametric bootstrap procedure.
set.seed(12345)
boot_np <- bootstrapMSmix(object = fit, n_boot = 200)
print(boot_np)
# Apply parametric bootstrap procedure and set all = TRUE
# to return the bootstrap MLEs of the consensus ranking.
set.seed(12345)
boot_p <- bootstrapMSmix(object = fit, n_boot = 200,
type = "parametric", all = TRUE)
print(boot_p)
# Plot the bootstrap estimates.
p_boot_p <- plot(boot_p)
p_boot_p$rho_heatmap()
p_boot_p$theta_density()
## Example 2. Compute the bootstrap 95% confidence intervals for the Antifragility dataset.
# Let us assume two clusters.
r_antifrag <- ranks_antifragility[, 1:7]
set.seed(12345)
fit <- fitMSmix(rankings = r_antifrag, n_clust = 2, n_start = 20)
# Apply soft bootstrap procedure and set all = TRUE
# to return the bootstrap MLEs of the consensus ranking.
set.seed(12345)
boot_soft <- bootstrapMSmix(object = fit, n_boot = 500,
n_start = 20, all = TRUE)
print(boot_soft)
# Plot the bootstrap estimates.
p_boot_soft <- plot(boot_soft)
p_boot_soft$rho_heatmap[[1]]()
p_boot_soft$rho_heatmap[[2]]()
p_boot_soft$theta_density()
p_boot_soft$weights_density()
# Apply separated bootstrap and compare results.
set.seed(12345)
boot_sep <- bootstrapMSmix(object = fit, n_boot = 500,
n_start = 20, type = "separated", all = TRUE)
print(boot_sep)
p_boot_sep <- plot(boot_sep)
p_boot_sep$rho_heatmap[[1]]()
p_boot_sep$rho_heatmap[[2]]()
p_boot_sep$theta_density()
print(boot_soft)
print(boot_sep)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.