Nothing
The package provides several robust estimation methods for linear regression under both fixed and high dimesional settings. The methods include Maximum Tangent Likelihood Estimator (MTE and MTElasso) (Qin et al., 2017+), Least Absolute Deviance Estimator (LAD and LADlasso) and Huber estimator (huber.reg and huber.lasso).
devtools::install_github("shaobo-li/MTE")
library(MTE)
set.seed(2017)
n=200; d=500
X=matrix(rnorm(n*d), nrow=n, ncol=d)
beta=c(rep(2,6), rep(0, d-6))
y=X%*%beta+c(rnorm(150), rnorm(30,10,10), rnorm(20,0,100))
output.MTELasso=MTElasso(X, y, p=2, t=0.01)
beta.est=output.MTELasso$beta
Qin, Y., Li, S., Li, Y., & Yu, Y. (2017). Penalized maximum tangent likelihood estimation and robust variable selection. doi:10.48550/arXiv.1708.05439.
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.