customParams | R Documentation |
Make custom parameters for MUVR internal modelling, not rdCV. Please note that, at present, there is no mtryMax for the outer (consensus) loop in effect.
customParams(
method = c("RF", "PLS", "SVM", "ANN"),
robust = 0.05,
ntreeIn = 150,
ntreeOut = 300,
mtryMaxIn = 150,
compMax = 5,
nodes = 200,
threshold = 0.1,
stepmax = 1e+08,
neuralMaxIn = 10,
kernel = "notkernel",
nu = 0.1,
gamma = 1,
degree = 1,
oneHot,
NZV,
rfMethod = c("randomForest", "ranger"),
svmMethod = c("svm", "ksvm", "svmlight"),
annMethod = c("nnet", "neuralnet")
)
method |
PLS or RF (default) |
robust |
Robustness (slack) criterion for determining min and max knees (defaults to 0.05) |
ntreeIn |
RF parameter: Number of trees in inner cross-validation loop models (defaults to 150) |
ntreeOut |
RF parameter: Number of trees in outer (consensus) cross-validation loop models (defaults to 300) |
mtryMaxIn |
RF parameter: Max number of variables to sample from at each node in the inner CV loop (defaults to 150). Will be further limited by standard RF rules (see randomForest documentation) |
compMax |
PLS parameter: Maximum number of PLS components (defaults to 5) |
nodes |
ann parameter: |
threshold |
ann parameter: |
stepmax |
ann parameter: |
neuralMaxIn |
ann parameter: Maximum number of ANN (defaults to 20) |
kernel |
svm parameter: kernal function to use, which includes sigmoid, radical, polynomial |
nu |
svm parameter: ratios of errors allowed in the training set range from 0-1 |
gamma |
svm parameters: needed for "vanilladot","polydot","rbfdot" kernel in svm |
degree |
svm parameter: needed for polynomial kernel in svm |
oneHot |
TRUE or FALSE using onehot endcoding or not |
NZV |
TRUE or FALSE using non-zero variance or not |
rfMethod |
randomforest method, which includes randomForest and ranger |
svmMethod |
support vector machine method, which includes svm, ksvm, s |
annMethod |
artificial neural network method which includes 2 different ann methods |
a 'methParam' object
# Standard parameters for random forest
methParam <- customParams() # or
methParam <- customParams('RF')
# Custom ntreeOut parameters for random forest
methParam <- customParams('RF',ntreeOut=50) # or
methParam <- customParams('RF')
methParam$ntreeOut <- 50
methParam
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.