mv_outlier | R Documentation |
Computes robust Mahalanobis distances for multivariate data using the Minimum Covariance Determinant (MCD) estimator, flags outliers based on either a chi-square quantile cutoff or an adjusted cutoff using the Atkinson–Riani–Welsh (ARW) method, and optionally generates a Mahalanobis Q–Q plot.
mv_outlier(
data,
outlier = TRUE,
qqplot = TRUE,
alpha = 0.05,
method = c("quan", "adj"),
label = TRUE,
title = "Chi-Square Q-Q Plot"
)
data |
A numeric matrix or data frame with observations in rows and at least two numeric columns. |
outlier |
Logical; if |
qqplot |
Logical; if |
alpha |
Numeric; significance level used for the adjusted cutoff method (only applies if |
method |
Character string specifying the outlier detection method. Must be either |
label |
Logical; if |
title |
Optional character string specifying the title for the Q–Q plot. Default is |
A list containing the following components:
outlier
, a data frame of Mahalanobis distances with observation IDs and outlier flags (if outlier = TRUE
);
qq_outlier_plot
, a ggplot object of the Mahalanobis Q–Q plot (if qqplot = TRUE
);
and newData
, a data frame of non-outlier observations.
## Not run:
data <- iris[, 1:4]
res <- mv_outlier(data, method = "adj", alpha = 0.025)
res$outlier
res$qq_outlier_plot
head(res$newData)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.