Nothing
get.2dfcom <- function(object, dfcom = NULL) {
# Residual degrees of freedom of model fitted on hypothetically complete data
# Unlike mice, using minimum across imputations to be conservative
#Internal function
#S3 method
#Based on: mice:::get.dfcom()
#URL: <https://cran.r-project.org/package=mice>
#URL: <https://github.com/stefvanbuuren/mice>
#URL: <https://cran.r-project.org/web/packages/mice/mice.pdf>
#URL: <https://www.jstatsoft.org/article/view/v045i03/v45i03.pdf>
#Authors: Stef van Buuren et al.
#Changes: Several
#Importing functions
#' @importFrom mice getfit
#' @importFrom rlang is_bare_numeric
#' @importFrom stats residuals coef
if (rlang::is_bare_numeric(dfcom, 1) && is.finite(dfcom)) {
return(max(dfcom, 1L))
}
dfcom <- NULL
if (!inherits(object, "mimira")) stop("The input for the object must be an object of the 'mimira' class.")
glanced <- try(summary(mice::getfit(object), type = "glance"), silent = TRUE)
if (!inherits(glanced, "try-error")) {
# try to extract from df.residual
if ("df.residual" %in% names(glanced)) {
dfcom <- min(glanced$df.residual)
}
else {
# try n - p (or nevent - p for Cox model)
model <- mice::getfit(object, 1L)
if (inherits(model, "coxph") && "nevent" %in% names(glanced)) {
dfcom <- min(glanced$nevent - length(coef(model)))
}
else {
if (!"nobs" %in% names(glanced)) {
glanced$nobs <- min(lengths(lapply(object$analyses, stats::residuals)), na.rm = TRUE)
}
dfcom <- min(glanced$nobs - length(coef(model)))
}
}
}
#Not found
#Warning("Infinite sample size assumed.")
if (is.null(dfcom) || !is.finite(dfcom)) dfcom <- 999999
dfcom
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.