inst/doc/MazamaRollUtils.R

## ----setup, include = FALSE---------------------------------------------------
knitr::opts_chunk$set(
  collapse = TRUE,
  comment = "#>",
  warning = FALSE,
  message = FALSE,
  fig.width = 7,
  fig.height = 7
)

## ----example_1----------------------------------------------------------------
library(MazamaRollUtils)

# Extract vectors from our example dataset
t <- example_pm25$datetime
x <- example_pm25$pm25

# Plot with 3- and 24-hr rolling means
layout(matrix(seq(2)))
plot(t, x, pch = 16, cex = 0.5)
lines(t, roll_mean(x, width = 3), col = 'red')
title("3-hour Rolling Mean")
plot(t, x, pch = 16, cex = 0.5)
lines(t, roll_mean(x, width = 24), col = 'red')
title("24-hour Rolling Mean")
layout(1)

## ----example_2----------------------------------------------------------------
library(MazamaRollUtils)

# Extract vectors from our example dataset
t <- example_pm25$datetime
x <- example_pm25$pm25

# Calculate the left-aligned 24-hr max every hour, ignoring NA values
max_24hr <- roll_max(x, width = 24, align = "left", by = 1, na.rm = TRUE)

# Calculate the left-aligned daily max once every 24 hours, ignoring NA values
max_daily_day <- roll_max(x, width = 24, align = "left", by = 24, na.rm = TRUE)

# Spread the max_daily_day value out to every hour with a right-aligned look "back"
max_daily_hour <- roll_max(max_daily_day, width = 24, align = "right", by = 1, na.rm = TRUE)

# Plot with 3- and 24-hr rolling means
layout(matrix(seq(3)))
plot(t, max_24hr, col = 'red')
points(t, x, pch = 16, cex = 0.5)
title("Rolling 24-hr Max")
plot(t, max_daily_day, col = 'red')
points(t, x, pch = 16, cex = 0.5)
title("Daily 24-hr Max")
plot(t, max_daily_hour, col = 'red')
points(t, x, pch = 16, cex = 0.5)
title("Hourly Daily Max")
layout(1)

## ----example_3----------------------------------------------------------------
library(MazamaRollUtils)

# Extract vectors from our example dataset
t <- example_pm25$datetime
x <- example_pm25$pm25

# Create weights for a 9-element exponentially weighted window
#   See:  https://en.wikipedia.org/wiki/Moving_average
N <- 9
alpha <- 2/(N + 1)
w <- (1-alpha)^(0:(N-1))
weights <- rev(w)          # right aligned window

EMA <- roll_mean(x, width = N, align = "right", weights = weights)

# Plot Exponential Moving Average (EMA)
plot(t, x, pch = 16, cex = 0.5)
lines(t, EMA, col = 'red')
title("9-Element Exponential Moving Average")

Try the MazamaRollUtils package in your browser

Any scripts or data that you put into this service are public.

MazamaRollUtils documentation built on June 8, 2025, 11:11 a.m.