linda.wald.test | R Documentation |
The function implements Wald test for bias-corrected regression coefficients generated from the linda
function.
One can utilize the function to perform ANOVA-type analyses. For example, if you have a cateogrical variable with three levels, you can test whether all levels have the same effect.
linda.wald.test(
linda.obj,
L,
model = c("LM", "LMM"),
alpha = 0.05,
p.adj.method = "BH"
)
linda.obj |
return from the |
L |
A matrix for testing |
model |
|
alpha |
significance level for testing |
p.adj.method |
P-value adjustment approach. See R function |
A data frame with columns
Fstat |
Wald statistics for each taxon |
df1 |
The numerator degrees of freedom |
df2 |
The denominator degrees of freedom |
pvalue |
|
padj |
|
reject |
|
Huijuan Zhou huijuanzhou2019@gmail.com Jun Chen Chen.Jun2@mayo.edu Xianyang Zhang zhangxiany@stat.tamu.edu
Zhou, H., He, K., Chen, J., Zhang, X. (2022). LinDA: linear models for differential abundance analysis of microbiome compositional data. Genome biology, 23(1), 95.
data(smokers)
ind <- smokers$meta$AIRWAYSITE == 'Throat'
otu.tab <- as.data.frame(smokers$otu[, ind])
depth <- colSums(otu.tab)
meta <- cbind.data.frame(Smoke = factor(smokers$meta$SMOKER[ind]),
Sex = factor(smokers$meta$SEX[ind]),
Site = factor(smokers$meta$SIDEOFBODY[ind]),
SubjectID = factor(smokers$meta$HOST_SUBJECT_ID[ind]))
ind <- depth >= 1000
linda.obj <- linda(otu.tab[, ind], meta[ind, ], formula = '~Smoke+Sex+(1|SubjectID)',
feature.dat.type = 'count',
prev.filter = 0.1, is.winsor = TRUE, outlier.pct = 0.03,
p.adj.method = "BH", alpha = 0.1)
# L matrix (2x3) is designed to test the second (Smoke) and the third (Sex) coefficient to be 0.
# For a categorical variable > two levels, similar L can be designed to do ANOVA-type test.
L <- matrix(c(0, 1, 0, 0, 0, 1), nrow = 2, byrow = TRUE)
result <- linda.wald.test(linda.obj, L, 'LMM', alpha = 0.1)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.