MuFiMeshGP | R Documentation |
The function computes the posterior mean and standard deviation of the MuFiMeshGP model.
MuFiMeshGP(
X,
t,
Y,
covtype = "Gaussian",
trend.type = "OK",
trend.dim = "input",
trend.pol = "quadratic",
interaction = NULL,
mean.known = NULL,
H.known = NULL,
gradient = TRUE,
init = NULL,
single_fidelity = FALSE,
param.bounds = NULL,
iso = FALSE,
l = 4,
nugget = 1e-06,
ncores = 1
)
X |
matrix of input locations. Each row represents a sample. |
t |
vector of fidelity levels. Each element is a sample and is connected
to the corresponding row in |
Y |
vector of response values. |
covtype |
covariance kernel type, only 'Gaussian' is available for now,
'Matern5_2' or 'Matern3_2' will be available soon (see |
trend.type , trend.dim , trend.pol , interaction |
define the mean function form of
the Gaussian process. |
mean.known |
Specifies the mean if |
H.known |
allow the user to specify the value of H as
|
gradient |
whether or not the gradient of the log-likelihood shouldbe used in the parameter estimation. |
init |
Where should the parameter estimation start from, a vector. |
single_fidelity |
can be used as |
param.bounds |
a list with two arguments( |
iso |
whether the covariance function will be isotropic ( |
l |
rate of convergence of the system (see Details), scalar. |
nugget |
(optional) for controlling numerical error. |
ncores |
(optional) number of cores for parallelization. |
From the model fitted by MuFiMeshGP
or update.MuFiMeshGP
the posterior mean and standard deviation are calculated for any input
location and fidelity level.
For details, see Boutelet and Sung (2025, <arXiv:2503.23158>).
a list which is given the S3 class "MuFiMeshGP"
MuFiMeshGP
for the model.
# Example code
f <- function(x, t){
x <- c(x)
return(exp(-1.4*x)*cos(3.5*pi*x)+sin(40*x)/10*t^2)
}
set.seed(1)
X <- matrix(runif(15,0,1), ncol = 1)
tt <- runif(15,0.5,2)
Y <- f(c(X), tt)
fit.mufimeshgp <- MuFiMeshGP(X, tt, Y)
xx <- matrix(seq(0,1,0.01), ncol = 1)
ftrue <- f(xx, 0)
# predict
pred.mufimeshgp <- predict(fit.mufimeshgp, xx, rep(0,101))
mu <- pred.mufimeshgp$mean
s <- pred.mufimeshgp$sd
lower <- mu + qnorm(0.025)*s
upper <- mu + qnorm(0.975)*s
# plot
oldpar <- par(mfrow = c(1,1))
plot(xx, ftrue, "l", ylim = c(-1,1.3), ylab = "y", xlab = "x")
lines(c(xx), mu, col = "blue")
lines(c(xx), lower, col = "blue", lty = 2)
lines(c(xx), upper, col = "blue", lty = 2)
points(c(X), Y, col = "red")
par(oldpar)
### RMSE ###
print(sqrt(mean((ftrue - mu))^2))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.