View source: R/plot.multordRS.R
plot.MultOrdRS | R Documentation |
Plot function for a MultOrdRS
object. Plots show coefficients of the explanatory variables, both with repect to location and response styles.
The coefficient pairs are displayed as stars, where the rays represent (1-alpha) confidence intervals.
## S3 method for class 'MultOrdRS'
plot(x, alpha = 0.05, CIfactor = 0.9,
xlab = expression(exp(gamma)), ylab = expression(exp(alpha)),
xlim = range(c(1,betaX.KI)), ylim = range(c(1,betaXRS.KI)), ...)
x |
|
alpha |
Specifies the confidence level 1-alpha of the confidence interval. |
CIfactor |
Argument that helps to control the appearance (the width) of the stars that represent the confidence intervals of both parameters (location and response style) corresponding to one covariate. |
xlab |
Label for x-axis |
ylab |
Label for y-axis |
xlim |
Limits for x-axis |
ylim |
Limits for y-axis |
... |
Further plot arguments. |
No return value, called for side effects
Gunther Schauberger
gunther.schauberger@tum.de
https://orcid.org/0000-0002-0392-1580
Schauberger, Gunther and Tutz, Gerhard (2021): Multivariate Ordinal Random Effects Models Including Subject and Group Specific Response Style Effects, Statistical Modelling, \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1177/1471082X20978034")}
multordRS
, ctrl.multordRS
data(tenseness)
## create a small subset of the data to speed up calculations
set.seed(1860)
tenseness <- tenseness[sample(1:nrow(tenseness), 300),]
## scale all metric variables to get comparable parameter estimates
tenseness$Age <- scale(tenseness$Age)
tenseness$Income <- scale(tenseness$Income)
## two formulas, one without and one with explanatory variables (gender and age)
f.tense0 <- as.formula(paste("cbind(",paste(names(tenseness)[1:4],collapse=","),") ~ 1"))
f.tense1 <- as.formula(paste("cbind(",paste(names(tenseness)[1:4],collapse=","),") ~ Gender + Age"))
####
## Adjacent Categories Models
####
## Multivariate adjacent categories model, without response style, without explanatory variables
m.tense0 <- multordRS(f.tense0, data = tenseness, control = ctrl.multordRS(RS = FALSE))
m.tense0
## Multivariate adjacent categories model, with response style as a random effect,
## without explanatory variables
m.tense1 <- multordRS(f.tense0, data = tenseness)
m.tense1
## Multivariate adjacent categories model, with response style as a random effect,
## without explanatory variables for response style BUT for location
m.tense2 <- multordRS(f.tense1, data = tenseness, control = ctrl.multordRS(XforRS = FALSE))
m.tense2
## Multivariate adjacent categories model, with response style as a random effect, with
## explanatory variables for location AND response style
m.tense3 <- multordRS(f.tense1, data = tenseness)
m.tense3
plot(m.tense3)
####
## Cumulative Models
####
## Multivariate cumulative model, without response style, without explanatory variables
m.tense0.cumul <- multordRS(f.tense0, data = tenseness,
control = ctrl.multordRS(RS = FALSE), model = "cumulative")
m.tense0.cumul
## Multivariate cumulative model, with response style as a random effect,
## without explanatory variables
m.tense1.cumul <- multordRS(f.tense0, data = tenseness, model = "cumulative")
m.tense1.cumul
## Multivariate cumulative model, with response style as a random effect,
## without explanatory variables for response style BUT for location
m.tense2.cumul <- multordRS(f.tense1, data = tenseness,
control = ctrl.multordRS(XforRS = FALSE), model = "cumulative")
m.tense2.cumul
## Multivariate cumulative model, with response style as a random effect, with
## explanatory variables for location AND response style
m.tense3.cumul <- multordRS(f.tense1, data = tenseness, model = "cumulative")
m.tense3.cumul
plot(m.tense3.cumul)
#################################################################
## Examples from Schauberger and Tutz (2020)
## Data from the German Longitudinal Election Study (GLES) 2017
#################################################################
####
## Source: German Longitudinal Election Study 2017
## Rossteutscher et al. 2017, https://doi.org/10.4232/1.12927
####
## load GLES data
data(GLES17)
## scale data
GLES17[,7:11] <- scale(GLES17[,7:11])
## define formula
f.GLES <- as.formula(cbind(RefugeeCrisis, ClimateChange, Terrorism,
Globalization, Turkey, NuclearEnergy) ~
Age + Gender + Unemployment + EastWest + Abitur)
## fit adjacent categories model without and with response style parameters
m.GLES0 <- multordRS(f.GLES, data = GLES17, control = ctrl.multordRS(RS = FALSE, cores = 6))
m.GLES <- multordRS(f.GLES, data = GLES17, control = ctrl.multordRS(cores = 6))
m.GLES0
m.GLES
plot(m.GLES, main = "Adjacent categories model")
## fit cumulative model without and with response style parameters (takes pretty long!!!)
m.GLES20 <- multordRS(f.GLES, data = GLES17, model="cumul",
control = ctrl.multordRS(opt.method = "nlminb", cores = 6, RS = FALSE))
m.GLES2 <- multordRS(f.GLES, data = GLES17, model="cumul",
control = ctrl.multordRS(opt.method = "nlminb", cores = 6))
m.GLES20
m.GLES2
plot(m.GLES2, main = "Cumulative model")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.