MvBinary: Modelling Multivariate Binary Data with Blocks of Specific One-Factor Distribution

Modelling Multivariate Binary Data with Blocks of Specific One-Factor Distribution. Variables are grouped into independent blocks. Each variable is described by two continuous parameters (its marginal probability and its dependency strength with the other block variables), and one binary parameter (positive or negative dependency). Model selection consists in the estimation of the repartition of the variables into blocks. It is carried out by the maximization of the BIC criterion by a deterministic (faster) algorithm or by a stochastic (more time consuming but optimal) algorithm. Tool functions facilitate the model interpretation.

AuthorMatthieu Marbac and Mohammed Sedki
Date of publication2016-12-15 16:46:38
MaintainerMohammed Sedki <mohammed.sedki@u-psud.fr>
LicenseGPL (>= 2)
Version1.1

View on CRAN

Questions? Problems? Suggestions? or email at ian@mutexlabs.com.

Please suggest features or report bugs with the GitHub issue tracker.

All documentation is copyright its authors; we didn't write any of that.