futures_price_forecast | R Documentation |
Analytically forecast future expected Futures prices under the risk-neutral version of a specified N-factor model.
futures_price_forecast( x_0, parameters, t = 0, futures_TTM = 1:10, percentiles = NULL )
x_0 |
|
parameters |
|
t |
|
futures_TTM |
|
percentiles |
|
Under the assumption or risk-neutrality, futures prices are equal to the expected future spot price. Additionally, under deterministic interest rates, forward prices are equal to futures prices. Let \mjeqnF_T,tF[T,t] denote the market price of a futures contract at time \mjeqntt with time \mjeqnTT until maturity. let * denote the risk-neutral expectation and variance of futures prices. The following equations assume that the first factor follows a Brownian Motion.
\mjdeqnE^*[ln(F_T,t)] = season(T) + \sum_i=1^Ne^-\kappa_iTx_i(0) + \mu^*t + A(T-t)E^*[ln(F[T,t])] = season(T) + sum_i=1^N (e^(-kappa[i] T) x[i,0] + mu * t + A(T-t))
Where: \mjdeqnA(T-t) = \mu^*(T-t)-\sum_i=1^N - \frac1-e^-\kappa_i (T-t)\lambda_i\kappa_i+\frac12(\sigma_1^2(T-t) + \sum_i.j\neq 1 \sigma_i \sigma_j \rho_i,j \frac1-e^-(\kappa_i+\kappa_j)(T-t)\kappa_i+\kappa_j) A(T-t) = mu^* (T-t) - sum_i=1^N ( - (1 - e^(-kappa[i] (T-t))lambda[i]) / kappa[i]) + 1/2 sigma[1]^2 (T-t) + sum_i.j != 1 sigma[i] sigma[j] rho[i,j] (1 - e^(-(kappa[i] + kappa[j])(T-t))) / (kappa[i] + kappa[j]) The variance is given by: \mjdeqnVar^*[ln(F_T,t)]= \sigma_1^2t + \sum_i.j\neq1 e^-(\kappa_i + \kappa_j)(T-t)\sigma_i\sigma_j\rho_i,j\frac1-e^-(\kappa_i+\kappa_j)t\kappa_i+\kappa_j Var^*[ln(F[T,t])] = sigma[1]^2 * t + sum_i.j != 1 e^(-(kappa[i] + kappa[j])(T-t)) sigma[i] sigma[j] rho[i,j] (1 - e^(-(kappa[i] + kappa[j])t))/(kappa[i] + kappa[j])
futures_price_forecast
returns a vector of expected Futures prices under a given N-factor model with specified time to maturities at time \mjeqntt. When percentiles
are specified, the function returns a matrix with the corresponding confidence bands in each column of the matrix.
Schwartz, E. S., and J. E. Smith, (2000). Short-Term Variations and Long-Term Dynamics in Commodity Prices. Manage. Sci., 46, 893-911.
Cortazar, G., and L. Naranjo, (2006). An N-factor Gaussian model of oil futures prices. Journal of Futures Markets: Futures, Options, and Other Derivative Products, 26(3), 243-268.
# Forecast futures prices of the Schwartz and Smith (2000) two-factor oil model: ## Step 1 - Run the Kalman filter for the two-factor oil model: SS_2F_filtered <- NFCP_Kalman_filter(parameter_values = SS_oil$two_factor, parameter_names = names(SS_oil$two_factor), log_futures = log(SS_oil$stitched_futures), dt = SS_oil$dt, futures_TTM = SS_oil$stitched_TTM, verbose = TRUE) ## Step 2 - Probabilistic forecast of the risk-neutral two-factor ## stochastic differential equation (SDE): futures_price_forecast(x_0 = SS_2F_filtered$x_t, parameters = SS_oil$two_factor, t = 0, futures_TTM = seq(0,9,1/12), percentiles = c(0.1, 0.9))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.