Sstep.Clutter | R Documentation |
The function performs one step propagation using the sequential Monte Carlo method with partial state proposal for tracking in clutter problem.
Sstep.Clutter(mm, xx, logww, yyy, par, xdim, ydim)
mm |
the Monte Carlo sample size |
xx |
the sample in the last iteration. |
logww |
the log weight in the last iteration. |
yyy |
the observations. |
par |
a list of parameter values |
xdim |
the dimension of the state varible. |
ydim |
the dimension of the observation. |
The function returns a list with the following components:
xx |
the new sample. |
logww |
the log weights. |
Tsay, R. and Chen, R. (2018). Nonlinear Time Series Analysis. John Wiley & Sons, New Jersey.
nobs <- 100; pd <- 0.95; ssw <- 0.1; ssv <- 0.5;
xx0 <- 0; ss0 <- 0.1; nyy <- 50;
yrange <- c(-80,80); xdim <- 2; ydim <- nyy;
simu <- simuTargetClutter(nobs,pd,ssw,ssv,xx0,ss0,nyy,yrange)
resample.sch <- rep(1,nobs)
mm <- 10000
yr <- yrange[2]-yrange[1]
par <- list(ssw=ssw,ssv=ssv,nyy=nyy,pd=pd,yr=yr)
yr<- yrange[2]-yrange[1]
xx.init <- matrix(nrow=2,ncol=mm)
xx.init[1,] <- yrange[1]+runif(mm)*yr
xx.init[2,] <- rep(0.1,mm)
out <- SMC(Sstep.Clutter,nobs,simu$yy,mm,par,xx.init,xdim,ydim,resample.sch)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.