Figures for Nested Data Paper"

# Library ----

library(dplyr)
library(iMRMC)
library(mvtnorm)
library(NestMRMC)
library(doParallel)
library(ggplot2)
library(gridExtra)

Figure 3 in the paper--histogram of number of positive and negative ROIs in

balance and unbalance design

## Balance design 
sim.config = simu_config(fix_design = T,stream = 1)
data = data_MRMC(sim.config)$data_final
numROI_balance = AUC_per_reader_nest(data)$numROI

## Unbalance design
sim.config = simu_config(correlation_t = 0.8, fix_design = T,stream = 1)
data = data_MRMC(sim.config)$data_final
numROI_unbalance = AUC_per_reader_nest(data)$numROI

numROI_comb = cbind(numROI_balance,numROI_unbalance)

numROI_df_new = data.frame(num_ROI = c(numROI_comb[1,],numROI_comb[2,]),
                           truth = as.factor(rep(c("pos","neg"),each = 200)),
                           design = rep(rep(c("balance","unbalance"),each = 100),2) 
                           %>% as.factor())

## histogram
ggplot(numROI_df_new, aes(x = num_ROI, 
                          color = interaction(design,truth),
                          fill = interaction(design,truth))) + 
                          geom_histogram(alpha = 0.5,bins = 30, 
                          position = "dodge")

Figure 4

Data description for Figure 4

## Configs
AUC = c(0.7,0.8,0.9)
COV = c(0.1,0.25,0.5,0.75,0.9)
RHO = c(0.1,0.25,0.5,0.75,0.9)
## load data and name the columns
sim_result_blance = read.csv("NestMRMC_simulation_results/sim_result_blance_fixed_cov05062021.csv",header = T)[,-1]
sim_result_unblance = read.csv("NestMRMC_simulation_results/sim_result_unblance_fixed_cov05062021.csv",header = T)[,-1]

sim_result_blance$RHO = rep(rep(RHO,each = 5),3)
sim_result_blance$COV = rep(COV,15)

sim_result_unblance$RHO = rep(rep(RHO,each = 5),3)
sim_result_unblance$COV = rep(COV,15)



## Convert parameter to factor for better visulization
sim_result_blance$RHO = as.factor(rep(rep(RHO,each = 5),3))
sim_result_blance$COV = as.factor(rep(COV,15))
sim_result_blance$TRUE_AUC = as.factor(rep(AUC, each = 25))

sim_result_unblance$RHO = as.factor(rep(rep(RHO,each = 5),3))
sim_result_unblance$COV = as.factor(rep(COV,15))
sim_result_unblance$TRUE_AUC = as.factor(rep(AUC, each = 25))

configs_75 = sim_result_blance[,16:18]

row.names(configs_75) = paste0('Config ', 1:75)
## plot MC truth vs theoretical truth ----

## VAR
p1_MCvsTheo = ggplot(sim_result_blance %>% filter(TRUE_AUC == 0.7),
                     aes(x = TRUE_VAR_MEAN, y = R1AUC_VAR)) + 
  geom_point(aes(group =  TRUE_AUC, color = COV, shape = RHO), size = 1) +
ggtitle("Balance AUC = 0.7") + ylim(0,0.0017) + xlim(0,0.0017) + 
  xlab("Theoretical AUC Variance") + ylab("MC AUC Variance") +
  geom_abline(intercept = 0, slope = 1,linetype = "dashed", color = "black")+
  theme_bw()+ theme(text = element_text(size = 7)) + 
  guides(colour = guide_legend(override.aes = list(size=1)),
         shape = guide_legend(override.aes = list(size=1))) 


p2_MCvsTheo = ggplot(sim_result_blance %>% filter(TRUE_AUC == 0.8),
                     aes(x = TRUE_VAR_MEAN, y = R1AUC_VAR)) + 
  geom_point(aes(group =  TRUE_AUC, color = COV, shape = RHO), size = 1) +
ggtitle("Balance AUC = 0.8") + ylim(0,0.0017) + xlim(0,0.0017) + 
  xlab("Theoretical AUC Variance") + ylab("MC AUC Variance") +
  geom_abline(intercept = 0, slope = 1,linetype = "dashed", color = "black")+
  theme_bw()+ theme(text = element_text(size = 7)) + 
  guides(colour = guide_legend(override.aes = list(size=1)), 
         shape = guide_legend(override.aes = list(size=1))) 


p3_MCvsTheo = ggplot(sim_result_blance %>% filter(TRUE_AUC == 0.9),
                     aes(x = TRUE_VAR_MEAN, y = R1AUC_VAR)) + 
  geom_point(aes(group =  TRUE_AUC, color = COV, shape = RHO), size = 1) +
ggtitle("Balance AUC = 0.9") + ylim(0,0.0017) + xlim(0,0.0017) + 
  xlab("Theoretical AUC Variance") + ylab("MC AUC Variance") +
  geom_abline(intercept = 0, slope = 1,linetype = "dashed", color = "black")+
  theme_bw()+ theme(text = element_text(size = 7)) + 
  guides(colour = guide_legend(override.aes = list(size=1)),
         shape = guide_legend(override.aes = list(size=1))) 


p4_MCvsTheo = ggplot(sim_result_unblance %>% filter(TRUE_AUC == 0.7),
                     aes(x = TRUE_VAR_MEAN, y = R1AUC_VAR)) + 
  geom_point(aes(group =  TRUE_AUC, color = COV, shape = RHO), size = 1) +
  ggtitle("Unbalance AUC = 0.7") + ylim(0,0.0017) + xlim(0,0.0017) + 
  xlab("Theoretical AUC Variance") + ylab("MC AUC Variance") +
  geom_abline(intercept = 0, slope = 1,linetype = "dashed", color = "black")+
  theme_bw()+ theme(text = element_text(size = 7)) + 
  guides(colour = guide_legend(override.aes = list(size=1)),
         shape = guide_legend(override.aes = list(size=1))) 


p5_MCvsTheo = ggplot(sim_result_unblance %>% filter(TRUE_AUC == 0.8),
                     aes(x = TRUE_VAR_MEAN, y = R1AUC_VAR)) + 
  geom_point(aes(group =  TRUE_AUC, color = COV, shape = RHO), size = 1) +
  ggtitle("Unbalance AUC = 0.8") +  
  ylim(0,0.0017) + 
  xlim(0,0.0017) + 
  xlab("Theoretical AUC Variance") + 
  ylab("MC AUC Variance") +
  geom_abline(intercept = 0, slope = 1,linetype = "dashed", color = "black")+
  theme_bw()+ 
  theme(text = element_text(size = 7)) + 
  guides(colour = guide_legend(override.aes = list(size=1)),
         shape = guide_legend(override.aes = list(size=1))) 


p6_MCvsTheo = ggplot(sim_result_unblance %>% filter(TRUE_AUC == 0.9),
  aes(x = TRUE_VAR_MEAN, y = R1AUC_VAR)) + 
  geom_point(aes(group =  TRUE_AUC, color = COV, shape = RHO), size = 1) +
  ggtitle("Unbalance AUC = 0.9") + 
  ylim(0,0.0017) + 
  xlim(0,0.0017) + 
  xlab("Theoretical AUC Variance") + 
  ylab("MC AUC Variance") +
  geom_abline(intercept = 0, slope = 1,linetype = "dashed", color = "black") +
  theme_bw() + 
  theme(text = element_text(size = 7)) + 
  guides(colour = guide_legend(override.aes = list(size=1)),
  shape = guide_legend(override.aes = list(size=1))) 

grid.arrange(p1_MCvsTheo, p2_MCvsTheo, p3_MCvsTheo,
             p4_MCvsTheo, p5_MCvsTheo, p6_MCvsTheo,nrow = 2,ncol = 3)

Figure 5

Data description for Figure 5

## Load data
sim_result_blance = read.csv("NestMRMC_simulation_results/sim_result_blance_unfixed_cov005182021.csv",header = T)[,-1]
sim_result_unblance = read.csv("NestMRMC_simulation_results/sim_result_unblance_unfixed_cov05182021.csv",header = T)[,-1]

sim_result_blance$RHO = rep(rep(RHO,each = 5),3)
sim_result_blance$COV = rep(COV,15)

sim_result_unblance$RHO = rep(rep(RHO,each = 5),3)
sim_result_unblance$COV = rep(COV,15)

## Convert parameter to factor for better visulization
sim_result_blance$RHO = as.factor(rep(rep(RHO,each = 5),3))
sim_result_blance$COV = as.factor(rep(COV,15))
sim_result_blance$TRUE_AUC = as.factor(rep(AUC, each = 25))
sim_result_blance$TRUE_AUC = rep(AUC, each = 25)
sim_result_unblance$RHO = as.factor(rep(rep(RHO,each = 5),3))
sim_result_unblance$COV = as.factor(rep(COV,15))
sim_result_unblance$TRUE_AUC = as.factor(rep(AUC, each = 25))
sim_result_unblance$TRUE_AUC = rep(AUC, each = 25)
## VAR
p1_MCvsTheo = ggplot(sim_result_blance %>% filter(TRUE_AUC == 0.7),
                     aes(x = TRUE_VAR_MEAN, y = R1VAR_MEAN)) + 
  geom_point(aes( color = COV, shape = RHO),size = 1) +
  ggtitle("Balance AUC = 0.7") + ylim(0,0.0017) + xlim(0,0.0017) + 
  xlab("MC truth of AUC VAR") + ylab("MC MEAN of AUC VAR Estimates") +
  geom_abline(intercept = 0, slope = 1,linetype = "dashed", color = "black")+
  theme_bw()+ theme(text = element_text(size = 7)) + 
  guides(colour = guide_legend(override.aes = list(size=1)),
         shape = guide_legend(override.aes = list(size=1))) 


p2_MCvsTheo = ggplot(sim_result_blance %>% filter(TRUE_AUC == 0.8),
                     aes(x = TRUE_VAR_MEAN, y = R1VAR_MEAN)) + 
  geom_point(aes( color = COV, shape = RHO),size = 1) +
  ggtitle("Balance AUC = 0.8") + ylim(0,0.0017) + xlim(0,0.0017) + 
  xlab("MC truth of AUC VAR") + ylab("MC MEAN of AUC VAR Estimates") +
  geom_abline(intercept = 0, slope = 1,linetype = "dashed", color = "black")+
  theme_bw()+ theme(text = element_text(size = 7)) + 
  guides(colour = guide_legend(override.aes = list(size=1)),
         shape = guide_legend(override.aes = list(size=1))) 


p3_MCvsTheo = ggplot(sim_result_blance %>% filter(TRUE_AUC == 0.9),
                     aes(x = TRUE_VAR_MEAN, y = R1VAR_MEAN)) + 
  geom_point(aes( color = COV, shape = RHO),size = 1) +
  ggtitle("Balance AUC = 0.9") + ylim(0,0.0017) + xlim(0,0.0017) + 
  xlab("MC truth of AUC VAR") + ylab("MC MEAN of AUC VAR Estimates") +
  geom_abline(intercept = 0, slope = 1,linetype = "dashed", color = "black")+
  theme_bw()+ theme(text = element_text(size = 7)) + 
  guides(colour = guide_legend(override.aes = list(size=1)),
         shape = guide_legend(override.aes = list(size=1))) 



p4_MCvsTheo = ggplot(sim_result_unblance %>% filter(TRUE_AUC == 0.7),
                     aes(x = TRUE_VAR_MEAN, y = R1VAR_MEAN)) + 
  geom_point(aes( color = COV, shape = RHO),size = 1) +
  ggtitle("Unbalance AUC = 0.7") + ylim(0,0.0017) + xlim(0,0.0017) +  
  xlab("MC truth of AUC VAR") + ylab("MC MEAN of AUC VAR Estimates") +
  geom_abline(intercept = 0, slope = 1,linetype = "dashed", color = "black")+
  theme_bw()+ theme(text = element_text(size = 7)) + 
  guides(colour = guide_legend(override.aes = list(size=1)),
         shape = guide_legend(override.aes = list(size=1))) 


p5_MCvsTheo = ggplot(sim_result_unblance %>% filter(TRUE_AUC == 0.8),
                     aes(x = TRUE_VAR_MEAN, y = R1VAR_MEAN)) + 
  geom_point(aes( color = COV, shape = RHO),size = 1) +
  ggtitle("Unbalance AUC = 0.8") + ylim(0,0.0017) + xlim(0,0.0017) +  
  xlab("MC truth of AUC VAR") + ylab("MC MEAN of AUC VAR Estimates") +
  geom_abline(intercept = 0, slope = 1,linetype = "dashed", color = "black")+
  theme_bw()+ theme(text = element_text(size = 7)) + 
  guides(colour = guide_legend(override.aes = list(size=1)),
         shape = guide_legend(override.aes = list(size=1))) 


p6_MCvsTheo = ggplot(sim_result_unblance %>% filter(TRUE_AUC == 0.9),
                     aes(x = TRUE_VAR_MEAN, y = R1VAR_MEAN)) + 
  geom_point(aes( color = COV, shape = RHO),size = 1) +
  ggtitle("Unbalance AUC = 0.9") + ylim(0,0.0017) + xlim(0,0.0017) + 
  xlab("MC truth of AUC VAR") + ylab("MC MEAN of AUC VAR Estimates") +
  geom_abline(intercept = 0, slope = 1,linetype = "dashed", color = "black")+
  theme_bw()+ theme(text = element_text(size = 7)) + 
  guides(colour = guide_legend(override.aes = list(size=1)),
         shape = guide_legend(override.aes = list(size=1))) 



grid.arrange(p1_MCvsTheo, p2_MCvsTheo, p3_MCvsTheo,
             p4_MCvsTheo, p5_MCvsTheo, p6_MCvsTheo,nrow = 2,ncol = 3)

Figure 6

Data description for Figure 6

## load data ----

sim_result_blance = read.csv("NestMRMC_simulation_results/sim_result_blance_unfixed_cov10042021.csv",header = T)[,-1]
sim_result_unblance = read.csv("NestMRMC_simulation_results/sim_result_unblance_unfixed_cov10042021.csv",header = T)[,-1]

sim_nancy_blance = read.csv("NestMRMC_simulation_results/sim_Nancy_blance_unfixed_cov10042021.csv",header = T)[,-1]
sim_nancy_unblance = read.csv("NestMRMC_simulation_results/sim_Nancy_unblance_unfixed_cov10042021.csv",header = T)[,-1]

AUC = c(0.7,0.8,0.9)%>% as.factor()
COV = c(0.1,0.25,0.5,0.75,0.9)%>% as.factor()
RHO = as.factor(c(0.1,0.25,0.5,0.75,0.9))


## calculate the bias ---- 

## AUC Bias
sim_result_blance$R1AUC_BIAS = (sim_result_blance$TRUE_AUC - sim_result_blance$R1AUC_MEAN)/sim_result_blance$TRUE_AUC
sim_result_unblance$R1AUC_BIAS = (sim_result_unblance$TRUE_AUC - sim_result_unblance$R1AUC_MEAN)/sim_result_unblance$TRUE_AUC
sim_nancy_blance$R1AUC_BIAS = (sim_nancy_blance$TRUE_AUC - sim_nancy_blance$R1AUC_MEAN)/sim_nancy_blance$TRUE_AUC
sim_nancy_unblance$R1AUC_BIAS = (sim_nancy_unblance$TRUE_AUC - sim_nancy_unblance$R1AUC_MEAN)/sim_nancy_unblance$TRUE_AUC

## VAR Bias
sim_result_blance$R1VAR_BIAS = (sim_result_blance$R1AUC_VAR - sim_result_blance$R1VAR_MEAN)/sim_result_blance$R1AUC_VAR
sim_result_unblance$R1VAR_BIAS = (sim_result_unblance$R1AUC_VAR - sim_result_unblance$R1VAR_MEAN)/sim_result_unblance$R1AUC_VAR
sim_nancy_blance$R1VAR_BIAS = (sim_nancy_blance$R1AUC_VAR - sim_nancy_blance$R1VAR_MEAN)/sim_nancy_blance$R1AUC_VAR
sim_nancy_unblance$R1VAR_BIAS = (sim_nancy_unblance$R1AUC_VAR - sim_nancy_unblance$R1VAR_MEAN)/sim_nancy_unblance$R1AUC_VAR



sim_result_blance$R1VAR_BIAS = (sim_result_blance$R1AUC_VAR - sim_result_blance$R1VAR_MEAN)
sim_result_unblance$R1VAR_BIAS = (sim_result_unblance$R1AUC_VAR - sim_result_unblance$R1VAR_MEAN)
sim_nancy_blance$R1VAR_BIAS = (sim_nancy_blance$R1AUC_VAR - sim_nancy_blance$R1VAR_MEAN)
sim_nancy_unblance$R1VAR_BIAS = (sim_nancy_unblance$R1AUC_VAR - sim_nancy_unblance$R1VAR_MEAN)
## COV Bias


sim_result_blance$R1R2COV_BIAS = (sim_result_blance$R1R2COV_MC - sim_result_blance$R1R2COV_MEAN)/sim_result_blance$R1R2COV_MC
sim_result_unblance$R1R2COV_BIAS = (sim_result_unblance$R1R2COV_MC - sim_result_unblance$R1R2COV_MEAN)/sim_result_unblance$R1R2COV_MC
sim_nancy_blance$R1R2COV_BIAS = (sim_nancy_blance$R1R2COV_MC - sim_nancy_blance$R1R2COV_MEAN)/sim_nancy_blance$R1R2COV_MC
sim_nancy_unblance$R1R2COV_BIAS = (sim_nancy_unblance$R1R2COV_MC - sim_nancy_unblance$R1R2COV_MEAN)/sim_nancy_unblance$R1R2COV_MC

sim_result_blance$R1R2COV_BIAS = (sim_result_blance$R1R2COV_MC - sim_result_blance$R1R2COV_MEAN)
sim_result_unblance$R1R2COV_BIAS = (sim_result_unblance$R1R2COV_MC - sim_result_unblance$R1R2COV_MEAN)
sim_nancy_blance$R1R2COV_BIAS = (sim_nancy_blance$R1R2COV_MC - sim_nancy_blance$R1R2COV_MEAN)
sim_nancy_unblance$R1R2COV_BIAS = (sim_nancy_unblance$R1R2COV_MC - sim_nancy_unblance$R1R2COV_MEAN)

## Bias plot ---- 

## AUC bias
AUC_bias_combine = data.frame(method = rep(c("CCAUC","Nancy"),each = 150), 
                          design = rep(rep(c("balance","unbalance"),each = 75),2),
                          bias = c(sim_result_blance$R1AUC_BIAS,sim_result_unblance$R1AUC_BIAS,
                                   sim_nancy_blance$R1AUC_BIAS,sim_nancy_unblance$R1AUC_BIAS))


p1 = ggplot(AUC_bias_combine, aes(x=1:300,y = bias)) + geom_point(aes(color = method, shape = design))+
ggtitle("AUC Relative Bias") + labs(x = "configurations", y = "AUC Relative Bias") + 
geom_vline(xintercept = seq(75,225,by = 75), linetype = "dashed", size =0.5) +
theme_bw() +  theme(text = element_text(size = 7)) 

## VAR bias

VAR_bias_combine = data.frame(method = rep(c("CCAUC","Nancy"),each = 150), 
                              design = rep(rep(c("balance","unbalance"),each = 75),2),
                              AUC = rep(AUC,each = 25),
                              RHO = rep(rep(rep(RHO,each = 5),3),2),
                              cov = rep(rep(COV,15),2),
                              bias = c(sim_result_blance$R1VAR_BIAS,sim_result_unblance$R1VAR_BIAS,
                                       sim_nancy_blance$R1VAR_BIAS,sim_nancy_unblance$R1VAR_BIAS))


p2 = ggplot(VAR_bias_combine%>%filter(method == "CCAUC"), aes(x=1:150,y = bias)) + 
geom_point(aes(color = AUC,,shape = RHO))+ labs(x = "configurations", y = "VAR Relative Bias") + 
geom_vline(xintercept = seq(75,149,by = 75), linetype = "dashed", size =0.5) +
theme_bw() +  theme(text = element_text(size = 7)) 
## COV bias

COV_bias_combine = data.frame(method = rep(c("CCAUC","Nancy"),each = 150), 
                              design = rep(rep(c("balance","unbalance"),each = 75),2),
                              AUC = rep(AUC,each = 25),
                              RHO = rep(rep(rep(RHO,each = 5),3),2),
                              cov = rep(rep(COV,15),2),
                              bias = c(sim_result_blance$R1R2COV_BIAS,sim_result_unblance$R1R2COV_BIAS,
                                       sim_nancy_blance$R1R2COV_BIAS,sim_nancy_unblance$R1R2COV_BIAS))


p3 = ggplot(COV_bias_combine%>%filter(method == "CCAUC"), aes(x=1:150,y = bias)) + geom_point(aes(color = AUC,shape = RHO))+
  labs(x = "configurations", y = "COV Relative Bias")  + 
  geom_vline(xintercept = seq(75,149,by = 75), linetype = "dashed", size =0.5) +
  theme_bw() +  theme(text = element_text(size = 7)) 


#grid.arrange(p1,p2,p3,nrow =1)

## calculate CV ----

## AUC CV


sim_result_blance$R1AUC_CV = sqrt(sim_result_blance$R1AUC_VAR)/sim_result_blance$TRUE_AUC
sim_result_unblance$R1AUC_CV = sqrt(sim_result_unblance$R1AUC_VAR)/sim_result_unblance$TRUE_AUC
sim_nancy_blance$R1AUC_CV = sqrt(sim_nancy_blance$R1AUC_VAR)/sim_nancy_blance$TRUE_AUC
sim_nancy_unblance$R1AUC_CV = sqrt(sim_nancy_unblance$R1AUC_VAR)/sim_nancy_unblance$TRUE_AUC

## VAR CV
sim_result_blance$R1VAR_CV = sqrt(sim_result_blance$R1VAR_VAR)/sim_result_blance$R1AUC_VAR
sim_result_unblance$R1VAR_CV = sqrt(sim_result_unblance$R1VAR_VAR)/sim_result_unblance$R1AUC_VAR
sim_nancy_blance$R1VAR_CV = sqrt(sim_nancy_blance$R1VAR_VAR)/sim_nancy_blance$R1AUC_VAR
sim_nancy_unblance$R1VAR_CV = sqrt(sim_nancy_unblance$R1VAR_VAR)/sim_nancy_unblance$R1AUC_VAR


sim_result_blance$R1VAR_CV = sqrt(sim_result_blance$R1VAR_VAR)
sim_result_unblance$R1VAR_CV = sqrt(sim_result_unblance$R1VAR_VAR)
sim_nancy_blance$R1VAR_CV = sqrt(sim_nancy_blance$R1VAR_VAR)/sim_nancy_blance$R1AUC_VAR
sim_nancy_unblance$R1VAR_CV = sqrt(sim_nancy_unblance$R1VAR_VAR)/sim_nancy_unblance$R1AUC_VAR
## COV CV

sim_result_blance$R1R2COV_CV = sqrt(sim_result_blance$R1R2COV_VAR)/sim_result_blance$R1R2COV_MC
sim_result_unblance$R1R2COV_CV = sqrt(sim_result_unblance$R1R2COV_VAR)/sim_result_unblance$R1R2COV_MC
sim_nancy_blance$R1R2COV_CV = sqrt(sim_nancy_blance$R1R2COV_VAR)/sim_nancy_blance$R1R2COV_MC
sim_nancy_unblance$R1R2COV_CV = sqrt(sim_nancy_unblance$R1R2COV_VAR)/sim_nancy_unblance$R1R2COV_MC



## CV plot ---- 

## AUC cv
AUC_CV_combine = data.frame(method = rep(c("CCAUC","Nancy"),each = 150), 
                              design = rep(rep(c("balance","unbalance"),each = 75),2),
                              CV = c(sim_result_blance$R1AUC_CV,sim_result_unblance$R1AUC_CV,
                                       sim_nancy_blance$R1AUC_CV,sim_nancy_unblance$R1AUC_CV))


p4 = ggplot(AUC_CV_combine, aes(x=1:300,y = CV)) + geom_point(aes(color = method, shape = design))+
  ggtitle("AUC CV Compare") + labs(x = "configurations", y = "AUC CV") + 
  geom_vline(xintercept = seq(75,225,by = 75), linetype = "dashed", size =0.5) +
  theme_bw() +  theme(text = element_text(size = 7)) 

## VAR CV

VAR_CV_combine = data.frame(method = rep(c("CCAUC","Nancy"),each = 150), 
                            design = rep(rep(c("balance","unbalance"),each = 75),2),
                             AUC = rep(AUC,each = 25),
                             RHO = rep(rep(rep(RHO,each = 5),3),2),
                             cov = rep(rep(COV,15),2),
                              CV = c(sim_result_blance$R1VAR_CV,sim_result_unblance$R1VAR_CV,
                                       sim_nancy_blance$R1VAR_CV,sim_nancy_unblance$R1VAR_CV))


p5 = ggplot(VAR_CV_combine%>%filter(method == "CCAUC"), aes(x=1:150,y = CV)) + geom_point(aes(color = AUC, shape = RHO))+
 labs(x = "configurations", y = "VAR CV") + 
  geom_vline(xintercept = seq(75,149,by = 75), linetype = "dashed", size =0.5) +
  theme_bw() +  theme(text = element_text(size = 7)) 

## COV CV

COV_CV_combine = data.frame(method = rep(c("CCAUC","Nancy"),each = 150), 
                              design = rep(rep(c("balance","unbalance"),each = 75),2),
                            AUC = rep(AUC,each = 25),
                            RHO = rep(rep(rep(RHO,each = 5),3),2),
                            cov = rep(rep(COV,15),2),
                              CV = c(sim_result_blance$R1R2COV_CV,sim_result_unblance$R1R2COV_CV,
                                       sim_nancy_blance$R1R2COV_CV,sim_nancy_unblance$R1R2COV_CV))


p6 = ggplot(COV_CV_combine%>%filter(method == "CCAUC"), aes(x=1:150,y = CV)) + geom_point(aes(color = AUC, shape = RHO))+
  labs(x = "configurations", y = "COV CV") + #ylim(0,2.5) + 
  geom_vline(xintercept = seq(75,149,by = 75), linetype = "dashed", size =0.5) +
  theme_bw() +  theme(text = element_text(size = 7)) 



grid.arrange(p2,p3,p5,p6,nrow = 2)

Columns in the above files

75 configurations in the simulation

knitr::kable(configs_75, caption = '75 configurations')


Try the NestMRMC package in your browser

Any scripts or data that you put into this service are public.

NestMRMC documentation built on Oct. 21, 2022, 5:06 p.m.