Description Usage Arguments Details Value Note Author(s) References See Also Examples
The function nested.stdsurv
fits the Cox model to estimate
standardized survival curves and attributable risks for covariates
that are missing data on some cohort members. All covariates must be
factor variables.
nested.stdsurv
requires knowledge of the variables that
missingness depends on, with missingness probability modeled through a
glm
sampling model. Often, the data is in the form of a
casecontrol sample taken within a cohort. nested.stdsurv
allows
cases to have missing data, and can extract efficiency from auxiliary
variables by including them in the sampling model. nested.stdsurv
requires coxph
from the survival package.
1 2 3 4 5 6  nested.stdsurv(outcome, exposures, confounders, samplingmod, data,
exposureofinterest = "", timeofinterest = Inf,cuminc=FALSE,
plot = FALSE, plotfilename = "", glmlink = binomial(link = "logit"),
glmcontrol = glm.control(epsilon = 1e10, maxit = 10, trace = FALSE),
coxphcontrol = coxph.control(eps = 1e10, iter.max = 50),
missvarwarn = TRUE, ...)

Required arguments:
outcome 
Survival outcome of interest, must be a

exposures 
The part of the right side of the Cox model that parameterizes the
exposures. Never use '*' for interaction, use

confounders 
The part of the right side of the Cox model that
parameterizes the confounders. Never use '*' for interaction, use

samplingmod 
Right side of the formula for the 
data 
Data Frame that all variables are in 
Optional arguments:
exposureofinterest 
The name of the level of the exposures for which attributable risk is desired. Default is the first level of the exposure. 
timeofinterest 
The time at which survival probabilities and attributable risks are desired. Default is the last event time. 
cuminc 
Set to T if you want output as cumulative incidence, F for survival 
plot 
If T, plot the standardized survivals. Default is F. 
plotfilename 
A string for the filename to save the plot as 
glmlink 
Sampling model link function, default is logistic regression 
glmcontrol 
See 
coxphcontrol 
See 
missvarwarn 
Warn if there is missing data in the sampling variable. Default is TRUE 
... 
Any additional arguments to be passed on to 
If nested.stdsurv
reports that the sampling model "failed to converge",
the sampling model will be returned for your inspection. Note that if
some sampling probabilities are estimated at 1, the model technically
cannot converge, but you get very close to 1, and nested.stdsurv
will not report nonconvergence for this situation.
Note the following issues.
The data must be in a dataframe and specified in the data statement.
No variable can be named 'o.b.s.e.r.v.e.d.' or 'p.i.h.a.t.'.
Cases and controls cannot be finely matched on time, but
matching on time within large strata is allowed.
strata(), cluster() or offset() statements in
or confounders are not allowed.
Everyone must enter the cohort at the same time on the
vival time scale.
Must use Breslow TieBreaking.
All covariates must be factor variables, even if binary.
Do not use '*' to mean interaction in exposures or
confounders, use interaction
.
A List with the following components:
coxmod 
The fitted Cox model 
samplingmod 
The fitted glm sampling model 
survtable 
Standardized survival (and inference) for each exposure level 
riskdifftable 
Standardized survival (risk) differences (and inference) for each exposure level, relative to the exposure of interest. 
PARtable 
Population Attributable Risk (and inference) for the exposure of interest 
If plot=T, then the additional component is included:
plotdata 
A matrix with data needed to plot the survivals: time, standardized survival for each exposure level, and crude survival. Name of each exposure level is converted to a proper R variable name (these are the column labels). 
Requires the MASS library from the VR bundle that is available from the CRAN website.
Hormuzd A. Katki
Katki HA, Mark SD. Survival Analysis for Cohorts with Missing Covariate Information. RNews, 8(1) 149, 2008. http://www.rproject.org/doc/Rnews/Rnews_20081.pdf
Mark, S.D. and Katki, H.A. Specifying and Implementing Nonparametric and Semiparametric Survival Estimators in TwoStage (sampled) Cohort Studies with Missing Case Data. Journal of the American Statistical Association, 2006, 101, 460471.
Mark SD, Katki H. Influence function based variance estimation and missing data issues in casecohort studies. Lifetime Data Analysis, 2001; 7; 329342
Christian C. Abnet, Barry Lai, YouLin Qiao, Stefan Vogt, XianMao Luo, Philip R. Taylor, ZhiWei Dong, Steven D. Mark, Sanford M. Dawsey. Zinc concentration in esophageal biopsies measured by Xray fluorescence and cancer risk. Journal of the National Cancer Institute, 2005; 97(4) 301306
See Also: nested.coxph
, zinc
,
nested.km
, coxph
, glm
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29  ## Simple analysis of zinc and esophageal cancer data:
## We sampled zinc (variable znquartiles) on a fraction of the subjects, with
## sampling fractions depending on cancer status and baseline histology.
## We observed the confounding variables on almost all subjects.
data(zinc)
mod < nested.stdsurv(outcome="Surv(futime01,ec01==1)",
exposures="znquartiles",
confounders="sex+agestr+smoke+drink+mildysp+moddysp+sevdysp+anyhist",
samplingmod="ec01*basehist",exposureofinterest="Q4",data=zinc)
# This is the output:
# Standardized Survival for znquartiles by time 5893
# Survival StdErr 95% CI Left 95% CI Right
# Q1 0.5443 0.07232 0.3932 0.6727
# Q2 0.7595 0.07286 0.5799 0.8703
# Q3 0.7045 0.07174 0.5383 0.8203
# Q4 0.8911 0.06203 0.6863 0.9653
# Crude 0.7784 0.02491 0.7249 0.8228
# Standardized Risk Differences vs. znquartiles = Q4 by time 5893
# Risk Difference StdErr 95% CI Left 95% CI Right
# Q4  Q1 0.3468 0.10376 0.143412 0.5502
# Q4  Q2 0.1316 0.09605 0.056694 0.3198
# Q4  Q3 0.1866 0.09355 0.003196 0.3699
# Q4  Crude 0.1126 0.06353 0.011871 0.2372
# PAR if everyone had znquartiles = Q4
# Estimate StdErr 95% PAR CI Left 95% PAR CI Right
# PAR 0.5084 0.2777 0.4872 0.8375

Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.