approxB | R Documentation |
mmsbm
packageThese are various utilities and generic methods used by the main package function.
approxB(y, d_id, pi_mat, directed = TRUE)
getZ(pi_mat)
alphaLBound(par, tot_nodes, c_t, x_t, s_mat, t_id, var_beta, mu_beta)
alphaGrad(par, tot_nodes, c_t, x_t, s_mat, t_id, var_beta, mu_beta)
.cbind.fill(...)
.scaleVars(x, keep_const = TRUE)
.transf_muvar(orig, is_var, is_array, des.mat, nblock = NULL, nstate = NULL)
.bar.legend(colPalette, range)
.mpower(mat, p)
.findPerm(block_list, target_mat = NULL, use_perms = TRUE)
.transf(mat)
.compute.alpha(X, beta)
.vcovBeta(
all_phi,
beta_coef,
n.sim,
n.blk,
n.hmm,
n.nodes,
n.periods,
mu.beta,
var.beta,
est_kappa,
t_id_n,
X
)
.e.pi(alpha_list, kappa, C_mat = NULL)
.initPi(
soc_mats,
dyads,
edges,
nodes_pp,
dyads_pp,
n.blocks,
periods,
directed,
ctrl
)
y , d_id , pi_mat , directed |
Internal arguments for blockmodel approximation. |
par |
Vector of parameter values. |
tot_nodes |
Integer vector; total number of nodes each node interacts with. |
c_t |
Integer matrix; samples from Poisson-Binomial counts of a node instantiating a group. |
x_t |
Numeric matrix; transposed monadic design matrices. |
s_mat |
Integer matrix; Samples of HMM states by time period. |
t_id |
Integer vector; for each node, what time-period is it observed in? zero-indexed. |
mu_beta , var_beta |
Numeric arrays; prior mean and variances of monadic coefficients. |
... |
Numeric vectors; vectors of potentially different length to be cbind-ed. |
x , keep_const |
Internal arguments for matrix scaling. |
orig |
Object to be transformed. |
is_var |
Boolean. Is the object to be transformed a variance term? |
is_array |
Boolean. Is the object to be transformed an array? |
des.mat |
Numeric matrix. Design matrix corresponding to transformed object. |
nblock |
Number of groups in model, defaults to |
nstate |
Number of hidden Markov states in model, defaults to |
colPalette |
A function produced by |
range |
The range of values to label the legend. |
mat |
Numeric matrix. |
p |
Numeric scalar; power to raise matrix to. |
block_list |
List of matrices; each element is a square, numeric matrix that defines a blockmodel, |
target_mat |
Numeric matrix; reference blockmodel that those in block_list should
be aligned to. Optional, defaults to |
use_perms |
Boolean; should all row/column permutations be explored when
realigning matrices? defaults to |
X |
Numeric matrix; design matrix of monadic predictors. |
beta |
Numeric array; array of coefficients associated with monadic predictors. It of dimensions Nr. Predictors by Nr. of Blocks by Nr. of HMM states. |
all_phi , beta_coef , n.sim , n.blk , n.hmm , n.nodes , n.periods , mu.beta , var.beta , est_kappa , t_id_n |
Additional internal arguments for covariance estimation. |
alpha_list |
List of mixed-membership parameter matrices. |
kappa |
Numeric matrix; matrix of marginal HMM state probabilities. |
C_mat |
Numeric matrix; matrix of posterior counts of block instantiations per node. |
soc_mats , dyads , edges , nodes_pp , dyads_pp , n.blocks , periods , ctrl |
Internal arguments for MM computation. |
These functions are meant for internal use only.
See individual return section for each function:
Matrix of cbind
'ed elements in ...
, with missing values in each vector filled with NA
.
Matrix; the result of raising mat
to the p
power.
List of permuted blockmodel matrices.
Matrix with transformed mixed-membership vectors along its rows, s.t. no element is equal to 0.0 or 1.0.
List of predicted alpha matrices, one element per HMM state.
Matrix of predicted mixed-membership vectors along its rows, with expectation computed over marginal distribution over HMM states for each time period.
Transformed data.frame with missing values list-wise deleted, or expanded with missing indicator variables.
List of sociomatrices.
List of bootstrapped sociomatrices.
Santiago Olivella (olivella@unc.edu), Adeline Lo (aylo@wisc.edu), Tyler Pratt (tyler.pratt@yale.edu), Kosuke Imai (imai@harvard.edu)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.