NormalLaplaceDistribution | R Documentation |
Density function, distribution function, quantiles and random number
generation for the normal Laplace distribution, with parameters
\mu
(location), \delta
(scale),
\beta
(skewness), and \nu
(shape).
dnl(x, mu = 0, sigma = 1, alpha = 1, beta = 1,
param = c(mu,sigma,alpha,beta))
pnl(q, mu = 0, sigma = 1, alpha = 1, beta = 1,
param = c(mu,sigma,alpha,beta))
qnl(p, mu = 0, sigma = 1, alpha = 1, beta = 1,
param = c(mu,sigma,alpha,beta),
tol = 10^(-5), nInterpol = 100, subdivisions = 100, ...)
rnl(n, mu = 0, sigma = 1, alpha = 1, beta = 1,
param = c(mu,sigma,alpha,beta))
x, q |
Vector of quantiles. |
p |
Vector of probabilities. |
n |
Number of random variates to be generated. |
mu |
Location parameter |
sigma |
Scale parameter |
alpha |
Skewness parameter |
beta |
Shape parameter |
param |
Specifying the parameters as a vector of the form |
tol |
Specified level of tolerance when checking if parameter beta is equal to 0. |
subdivisions |
The maximum number of subdivisions used to integrate the density and determine the accuracy of the distribution function calculation. |
nInterpol |
Number of points used in |
... |
Passes arguments to |
Users may either specify the values of the parameters individually or
as a vector. If both forms are specified, then the values specified by
the vector param
will overwrite the other ones.
The density function is
f(y)=\frac{\alpha\beta}{\alpha+\beta}\phi\left(\frac{y-\mu}{\sigma }%
\right)\left[R\left(\alpha\sigma-\frac{(y-\mu)}{\sigma}\right)+%
R\left(\beta \sigma+\frac{(y-\mu)}{\sigma}\right)\right]
The distribution function is
F(y)=\Phi\left(\frac{y-\mu}{\sigma}\right)-%
\phi\left(\frac{y-\mu}{\sigma}\right)%
\left[\beta R(\alpha\sigma-\frac{y-\mu}{\sigma})-%
\alpha R\left(\beta\sigma+\frac{y-\mu}{\sigma}\right)\right]/%
(\alpha+\beta)
The function R(z)
is the Mills' Ratio, see millsR
.
Generation of random observations from the normal Laplace distribution
using rnl
is based on the representation
Y\sim Z+W
where Z
and W
are independent random variables with
Z\sim N(\mu,\sigma^2)
and W
following an asymmetric Laplace distribution with pdf
f_W(w) = \left\{ \begin{array}{ll}%
(\alpha\beta)/(\alpha+\beta)e^{\beta w} &
\textrm{for $w\le0$}\\ %
(\alpha\beta)/(\alpha+\beta)e^{-\beta w} & \textrm{for $w>0$}%
\end{array} \right.
dnl
gives the density function, pnl
gives the
distribution function, qnl
gives the quantile function and
rnl
generates random variates.
David Scott d.scott@auckland.ac.nz, Jason Shicong Fu
William J. Reed. (2006) The Normal-Laplace Distribution and Its Relatives. In Advances in Distribution Theory, Order Statistics and Inference, pp. 61–74. Birkhäuser, Boston.
param <- c(0,1,3,2)
par(mfrow = c(1,2))
## Curves of density and distribution
curve(dnl(x, param = param), -5, 5, n = 1000)
title("Density of the Normal Laplace Distribution")
curve(pnl(x, param = param), -5, 5, n = 1000)
title("Distribution Function of the Normal Laplace Distribution")
## Example of density and random numbers
par(mfrow = c(1,1))
param1 <- c(0,1,1,1)
data1 <- rnl(1000, param = param1)
curve(dnl(x, param = param1),
from = -5, to = 5, n = 1000, col = 2)
hist(data1, freq = FALSE, add = TRUE)
title("Density and Histogram")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.