View source: R/OBRECovarianceMatrix.R
OBRECovarianceMatrix | R Documentation |
The function computes matrices M (Jacobian) and Q (Variability) and uses them to evaluate the covariance matrix V.
OBRECovarianceMatrix(lOBRE)
lOBRE |
List of all the variables resulting from the OBRE computation. |
A list containing Jacobian of the estimate function, variability and asymptotic covariance matrices, as well as the relative efficiency with respect to Maximum Likelihood Estimator
Hampel, F., Ronchetti, E., Rousseeuw, P. & Stahel, W. (1985). Robust Statistics. The approach based on influence function. John Wiley and Sons Ltd., Chichester, UK.
Heritier S, Cantoni E, Copt S, Victoria-Feser M (2011). Robust Methods in Biostatistics. John Wiley and Sons Ltd., Chichester, UK.
try({distrForOBRE <- densityExpressions(strDistribution = "normal")
simData = c(rnorm(1000, 12, 2),200,150)
estOBRE <- OBRE(nvData = simData, strDistribution = distrForOBRE, nCParOBRE = 3)
lOBRECov = OBRECovarianceMatrix(estOBRE)})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.