Test functions | R Documentation |
x
Several test functions of varying complexity are available. They are defined on [0,1].
guirland(x)
sin1(x)
difficult(x)
difficult2(x)
double_sine(x, rho1 = 0.3, rho2 = 0.8, tmax = 0.5)
x |
vector specifying the location where the function is to be evaluated. |
rho1, rho2, tmax |
additional parameters for double_sine. |
These test functions are translated from the Matlab and Python codes in the references.
M. Valko, A. Carpentier and R. Munos (2013), Stochastic Simultaneous Optimistic Optimization,
ICML, 19-27 https://inria.hal.science/hal-00789606. Matlab code: https://team.inria.fr/sequel/software/StoSOO/.
J.-B. Grill, M. Valko and R. Munos (2015), Black-box optimization of noisy functions with unknown smoothness,
NIPS, 667-675 https://inria.hal.science/hal-01222915. Python code: https://team.inria.fr/sequel/software/POO/.
par(mfrow = c(2,3))
curve(guirland, n = 501)
curve(sin1)
curve(difficult, xlim = c(1e-8, 1), n = 1001)
xgrid <- seq(0, 1, length.out = 500)
plot(xgrid, sapply(xgrid, difficult2), type = 'l', ylab = "difficult2(x)")
plot(xgrid, sapply(xgrid, double_sine), type = 'l', ylab = "double_sine(x) (default)")
double_sine2 <- function(x) double_sine(x, rho1 = 0.8, rho2 = 0.3)
plot(xgrid, sapply(xgrid, double_sine2), type = 'l', ylab = "double_sine(x) (modified)")
par(mfrow = c(1,1))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.