View source: R/hill_quad_model.R
hill_quad_model | R Documentation |
Five-parameter Hill model with quadratic component, gradient, starting values, and back-calculation functions.
hill_quad_model(theta, x)
theta |
Vector of five parameters: (A, B, a, b, c). See details. |
x |
Vector of concentrations for the five-parameter Hill model with quadratic component. |
The five parameter Hill model with quadratic component is given by:
y = A + \frac{B-A}{( 1 + \exp( -(a + bz + cz^2) ) )}\text{, where }z = \log(x)
A =\min y
( minimum y value), B = \max y
(maximum y value), (a, b, c) are quadratic parameters for \log(x)
.
Notes:
1. If c = 0
, this model is equivalent to the four-parameter Hill model (hill.model).
2. The ic50 is defined such that a + bz + cz^2 = 0
. If the roots of the quadratic equation are real, then the ic50
is given by \tfrac{-b \pm\sqrt{b^2 - 4ac }}{2a}
.
Let N = length(x). Then
hill_quad_model(theta, x) returns a numeric vector of length N.
attr(hill_quad_model, "gradient")(theta, x) returns an N x 5 matrix.
attr(hill_quad_model, "start")(x, y) returns a numeric vector of length 5 with starting values for (A, B, a, b, c).
If the quadratic roots are real-valued, attr(hill_quad_model, "backsolve")(theta, y) returns a numeric vector of length=2.
Steven Novick
optim_fit
, rout_fitter
set.seed(123L)
x = rep( c(0, 2^(-4:4)), each=3 ) ## Dose
theta = c(0, 100, 2, 1, -0.5) ## Model parameters
y = hill_quad_model(theta, x) + rnorm( length(x), mean=0, sd=5 )
## Generate data
hill_quad_model(theta, x)
attr(hill_quad_model, "gradient")(theta, x)
attr(hill_quad_model, "start")(x, y)
attr(hill_quad_model, "backsolve")(theta, 50)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.