Description Usage Arguments Value Author(s) References Examples
Compute the classical efficient rounding of a non-normalized approximate design w
such that the resulting exact design has size floor(sum(w))
.
1 |
Fx |
the |
w |
the vector of non-negative real numbers of length |
echo |
Print the call of the function? |
The rounded version of w
Radoslav Harman and Samuel Rosa
Pukelsheim F, Rieder S (1992) Efficient rounding of approximate designs. Biometrika, 79(4), 763–770.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | # Compute a D-optimal approximate design
# Round it using the efficient rounding to various sizes
# Visualize the designs
Fx <- Fx_cube(~x1 + I(x1^2) + I(x1^3), lower = 0, upper = 1, n.levels = 11)
w.app <- od_REX(Fx)$w.best
Phi.app <- optcrit(Fx, w.app)
w.ex10 <- od_PUK(Fx, 10*w.app)$w.round
w.ex20 <- od_PUK(Fx, 20*w.app)$w.round
w.ex30 <- od_PUK(Fx, 30*w.app)$w.round
par(mfrow = c(2, 2))
od_plot(Fx, w.app, main.lab = "Approximate")
od_plot(Fx, w.ex10, main.lab = paste("N=10, Eff:", round(optcrit(Fx, w.ex10)/Phi.app/10, 4)))
od_plot(Fx, w.ex20, main.lab = paste("N=20, Eff:", round(optcrit(Fx, w.ex20)/Phi.app/20, 4)))
od_plot(Fx, w.ex30, main.lab = paste("N=30, Eff:", round(optcrit(Fx, w.ex30)/Phi.app/30, 4)))
par(mfrow = c(1, 1))
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.